Heapsort

In this chapter, we introduce another sorting algorithm. Like merge sort, but unlike
insertion sort, heapsort’s running time is O (n 1gn). Like insertion sort, but unlike
merge sort, heapsort sorts in place: only a constant number of array elements are
stored outside the input array at any time. Thus, heapsort combines the better
attributes of the two sorting algorithms we have already discussed.

Heapsort also introduces another algorithm design technique: the use of a data
structure, in this case one we call a “heap,” to manage information during the exe-
cution of the algorithm. Not only is the heap data structure useful for heapsort, but
it also makes an efficient priority queue. The heap data structure will reappear in
algorithms in later chapters.

We note that the term “heap” was originally coined in the context of heapsort, but
it has since come to refer to “garbage-collected storage,” such as the programming
languages Lisp and Java provide. Our heap data structure is not garbage-collected
storage, and whenever we refer to heaps in this book, we shall mean the structure
defined in this chapter.

6.1 Heaps

The (binary) heap data structure is an array object that can be viewed as a nearly
complete binary tree (see Section B.5.3), as shown in Figure 6.1. Each node
of the tree corresponds to an element of the array that stores the value in the
node. The tree is completely filled on all levels except possibly the lowest, which
is filled from the left up to a point. An array A that represents a heap is an
object with two attributes: length[A], which is the number of elements in the
array, and heap-size[A], the number of elements in the heap stored within ar-
ray A. That is, although A[1.. length[A]] may contain valid numbers, no element
past A[heap-size[A]], where heap-size[A] < length[A], is an element of the heap.

128

Chapter 6 Heapsort

(b)

Figure 6.1 A max-heap viewed as (a) a binary tree and (b) an array. The number within the circle
at each node in the tree is the value stored at that node. The number above a node is the corresponding
index in the array. Above and below the array are lines showing parent-child relationships; parents
are always to the left of their children. The tree has height three; the node at index 4 (with value 8)
has height one.

The root of the tree is A[1], and given the index i of a node, the indices of its parent
PARENT(7), left child LEFT(i), and right child RIGHT(i) can be computed simply:

PARENT(7)
return |i/2]

~
A8

LEFT(D)
return 2;

RIGHT()
return 2/ + 1

On most computers, the LEFT procedure can compute 2/ in one instruction by sim-
ply shifting the binary representation of i left one bit position. Similarly, the RIGHT
procedure can quickly compute 2i + 1 by shifting the binary representation of i left
one bit position and adding in a 1 as the low-order bit. The PARENT procedure
can compute |i/2] by shifting i right one bit position. In a good implementation
of heapsort, these three procedures are often implemented as “macros” or “in-line”
procedures.]

There are two kinds of binary heaps: max-heaps and min-heaps. In both kinds,
the values in the nodes satisfy a heap property, the specifics of which depend on
the kind of heap. In a max-heap, the max-heap property is that for every node i

other than the root,

A[PARENT(i)] > A[i],

6.1 Heaps 129

that is, the value of a node is at most the value of its parent. Thus, the largest
element in a max-heap is stored at the root, and the subtree rooted at a node contains
values no larger than that contained at the node itself. A min-heap is organized in
the opposite way; the min-heap property is that for every node i other than the
root,

A[PARENT(i)] < A[i] .

The smallest element in a min-heap is at the root.

For the heapsort algorithm, we use max-heaps. Min-heaps are commonly used
in priority queues, which we discuss in Section 6.5. We shall be precise in spec-
ifying whether we need a max-heap or a min-heap for any particular application,
and when properties apply to either max-heaps or min-heaps, we just use the term
“heap.”

Viewing a heap as a tree, we define the height of a node in a heap to be the
number of edges on the longest simple downward path from the node to a leaf, and
we define the height of the heap to be the height of its root. Since a heap of n ele-
ments is based on a complete binary tree, its height is @ (Ign) (see Exercise 6.1-2).
We shall see that the basic operations on heaps run in time at most proportional
to the height of the tree and thus take O(Ign) time. The remainder of this chapter
presents some basic procedures and shows how they are used in a sorting algorithm
and a priority-queue data structure. N

. The MAX-HEAPIFY procedure, which runs in O (lg n) time, is the key to main-
taining the max-heap property.

. The BUILD-MAX-HEAP procedure, which runs in linear time, produces a max-
heap from an unordered input array.

. The HEAPSORT procedure, which runs in O(n lgn) time, sorts an array in
place.

« The MAX-HEAP-INSERT, HEAP-EXTRACT-MAX, HEAP-INCREASE-KEY,
and HEAP-MAXIMUM procedures, which run in O(Ig n) time, allow the heap
data structure to be used as a priority queue.

Exercises

6.1-1
What are the minimum and maximum numbers of elements in a heap of height h?

6.1-2
“ Show that an n-element heap has height |1gn].

i 130 Chapter 6 Heapsort

6.1-3
Show that in any subtree of a max-heap, the root of the subtree contains the largest
value occurring anywhere in that subtree.

6.1-4 ,
Where in a max-heap might the smallest element reside, assuming that all elements
are distinct?

6.1-5
Is an array that is in sorted order a min-heap?

6.1-6)
;‘ Is the sequence (23, 17, 14,6, 13, 10, 1, 5, 7, 12) a max-heap?

6.1-7
Show that, with the array representation for storing an n-element heap, the leaves
are the nodes indexed by |n/2] + 1, |n/2] +2,...,n.

6.2 Maintaining the heap property

‘ | MAX-HEAPIFY is an important subroutine for manipulating max-heaps. Its inputs
are an array A and an index i into the array. When MAX-HEAPIFY is called, it is
assumed that the binary trees rooted at LEFT(i) and RIGHT(i) are max-heaps, but

~ that A[i] may be smaller than its children, thus violating the max-heap property.
The function of MAX-HEAPIFY is to let the value at A[i] “float down” in the max-
heap so that the subtree rooted at index i becomes a max-heap.

MAX-HEAPIFY (4, i)
1 | < LEFT(Q)
2 r < RIGHT(i)
3 if] < heap-size[A] and A[l] > Ali]
4 then largest < |
5 else largest < i s
6 ifr < heap-size[A] and A[r] > Allargest]
7
8
9
0

then largest <—r
if largest # i
then exchange A[i] <> A[largest]
MAX-HEAPIFY (A, largest)

I ; 1
\

Figure 6.2 illustrates the action of MAX-HEAPIFY. At each step, the largest of
the elements A[i], A[LEFT(i)], and A[RIGHT(i)] is determined, and its index is

6.2 Maintaining the heap property 131

v

Figure 6.2 The action of MAX-HEAPIFY(A, 2), where heap-size[A] = 10. (a) The initial con-
figuration, with A[2] at node i = 2 violating the max-heap property since it is not larger than
both children. The max-heap property is restored for node 2 in (b) by exchanging A[2] with A[4],
which destroys the max-heap property for node 4. The recursive call MAX-HEAPIFY(A, 4) now
has i = 4. After swapping A[4] with A[9], as shown in (c), node 4 is fixed up, and the recursive call
MAX-HEAPIFY(A, 9) yields no further change to the data structure.

stored in largest. If A[i] is largest, then the subtree rooted at node i is a max-heap
and the procedure terminates. Otherwise, one of the two children has the largest
element, and A[i] is swapped with A[largest], which causes node i and its children
to satisfy the max-heap property. The node indexed by largest, however, now has
the original value A[i], and thus the subtree rooted at largest may violate the max-
heap property. Consequently, MAX-HEAPIFY must be called recursively on that
subtree. . —

The running time of MAX-HEAPIFY on a subtree of size n rooted at given node i
is the ©(1) time to fix up the relationships among the elements A[i], A[LEFT(i)],
and A[RIGHT(i)], plus the time to run MAX-HEAPIFY on a subtree rooted at one
of the children of node i. The children’s subtrees each have size at most 2n/3—the
 worst case occurs when the last row of the tree is exactly half full—and the running
time of MAX-HEAPIFY can therefore be described by the recurrence

132

Chapter 6 Heapsort

T(n)<T(2n/3)+06(1).

The solution to this recurrence, by case 2 of the master theorem (Theorem 4.1),
is T(n) = O(lgn). Alternatively, we can characterize the running time of MAX-
HEAPIFY on a node of height / as O (k).

Exercises

6.2-1
Using Figure 6.2 as a model, illustrate the operation of MAX-HEAPIFY (A, 3) on
the array A = (27,17,3,16,13,10,1,5,7,12,4,8,9,0).

6.2-2

Starting with the procedure MAX-HEAPIFY, write pseudocode for the procedure
MIN-HEAPIFY (A, i), which performs the corresponding manipulation on a min-
heap. How does the running time of MIN-HEAPIFY compare to that of MAX-
HEAPIFY?

6.2-3
What is the effect of calling MAX-HEAPIFY (A, i) wheq the element A[i] is larger
than its children?

™~

6.2-4 :
What is the effect of calling MAX-HEAPIFY (A, i) for i > heap-size[A]/2?

6.2-5

The code for MAX-HEAPIFY is quite efficient in terms of constant factors, except
possibly for the recursive call in line 10, which might cause some compilers to
produce inefficient code. Write an efficient MAX-HEAPIFY that uses an iterative
control construct (a loop) instead of recursion.

6.2-6

Show that the worst-case running time of MAX-HEAPIFY on a heap of size n
is Q(lgn). (Hint: For a heap with n nodes, give node values that cause MAX-
HEAPIFY to be called recursively at every node on a path from the root down to a
leaf.) .)

6.3 Building a heap

We can use the procedure MAX-HEAPIFY in a bottom-up manner to convert an
array A[1..n], where n = length[A], into a max-heap. By Exercise 6.1-7, the

6.3 Building a heap 133

elements in the subarray A[([n/2]+1) ..n] are all leaves of the tree, and so each is
a 1-element heap to begin with. The procedure BUILD-MAX-HEAP goes through
the remaining nodes of the tree and runs MAX-HEAPIFY on each one.

BUILD-MAX-HEAP(A)

1 heap-size[A] < length[A]

2 fori « |length[A]/2] downto 1
3 do MAX-HEAPIFY (A, i)

Figure 6.3 shows an example of the action of BUILD-MAX-HEAP.
To show why BUILD-MAX-HEAP works correctly, we use the following loop
invariant:

At the start of each iteration of the for loop of lines 2-3, each node i + 1,
i +2,...,nis the root of a max-heap.

We need to show that this invariant is true prior to the first loop iteration, that each
iteration of the loop maintains the invariant, and that the invariant provides a useful
property to show correctness when the loop terminates.

Initialization: Prior to the first iteration of the loop, i ‘= |n/2]. Each node
[n/2] +1, [n/2] +2,...,nis aleaf and is thus the root of a trivial max-heap.

Maintenance: To see that each iteration maintains the loop invariant, observe that
the children of node i are numbered higher than i. By the loop invariant, there-
fore, they are both roots of max-heaps. This is precisely the condition required
for the call MAX-HEAPIFY (A, i) to make node i a max-heap root. Moreover,
the MAX-HEAPIFY call preserves the property that nodes i + 1,i +2,...,n
are all roots of max-heaps. Decrementing i in the for loop update reestablishes
the loop invariant for the next iteration.

Termination: At termination, ; = 0. By the loop invariant, each node 1,2, ..., n
is the root of a max-heap. In particular, node 1 is.

We can compute a simple upper bound on the running time of BUILD-MAX-
HEAP as follows. Each call to MAX-HEAPIFY costs O(lgn) time, and there
are O (n) such calls. Thus, the running time is O (n 1g n). This upper bound, though
correct, is not asymptotically tight.

We can derive a tighter bound by observing that the time for MAX-HEAPIFY to
run at a node varies with the height of the node in the tree, and the heights of most
nodes are small. Our tighter analysis relies on the properties that an n-element heap
has height [lgn| (see Exercise 6.1-2) and at most [n/2"+!] nodes of any height 4
(see Exercise 6.3-3).

The time required by MAX-HEAPIFY when called on a node of height % is O (h),
so we can express the total cost of BUILD-MAX-HEAP as

134

Chapter 6 Heapsort

ala]1]3]2]16[9]1014]8] 7]

Figure 6.3 The operation of BUILD-MAX-HEAP, showing the data structure before the call to
MAX-HEAPIFY in line 3 of BUILD-MAX-HEAP. (a) A 10-element input array A and the bi-
nary tree it represents. The figure shows that the loop index i refers to node 5 before the call
MAX-HEAPIFY(A,i). (b) The data structure that results. The loop index i for the next iteration
refers to node 4. (c)—(e) Subsequent iterations of the for loop in BUILD-MAX-HEAP. Observe that
whenever MAX-HEAPIFY is called on a node, the two subtrees of that node are both max-heaps.
(f) The max-heap after BUILD-MAX-HEAP finishes.

6.4 The heapsort algorithm 135

Ugn] lgnl 5
Z(zh"ﬁ]ompo(nzz—h) :

h=0

The last summation can be evaluated by substituting x = 1/2 in the formula (A.8),

which yields

i B 1/2

e fa (1-1/2)2
= 2,

Thus, the running time of BUILD-MAX-HEAP can be bounded as
Lign) h

O|n Z 7| = O\n
h=0 h=0

= 0.
Hence, we can build a max-heap from an unordered array in linear time.

We can build a min-heap by the procedure BUILD-MIN-HEAP, which is the
same as BUILD-MAX-HEAP but with the call to MAX-HEAPIFY in line 3 replaced
by a call to MIN-HEAPIFY (see Exercise 6.2-2). BUILD-MIN-HEAP produces a
min-heap from an unordered linear array in linear time.

R =

Exercises

6.3-1
Using Figure 6.3 as a model, illustrate the operation of BUILD-MAX-HEAP on the
array A = (5,3, 17,10, 84, 19, 6, 22, 9).

6.3-2
Why do we want the loop index i in line 2 of BUILD-MAX-HEAP to decrease from
[length[A]/2] to 1 rather than increase from 1 to |length[A]/2]?

6.3-3
Show that there are at most [7/2"+1] nodes of height / in any n-element heap.

6.4 The heapsort algorithm

. The heapsort algorithm starts by using BUILD-MAX-HEAP to build a max-heap
on the input array A[1..n], where n = length[A]. Since the maximum element
of the array is stored at the root A[1], it can be put into its correct final position

136

Chapter 6 Heapsort

by exchanging it with A[n]. If we now “discard” node » from the heap (by decre-
menting heap-size[A]), we observe that A[1.. (n — 1)] can easily be made into a
max-heap. The children of the root remain max-heaps, but the new root element
may violate the max-heap property. All that is needed to restore the max-heap
property, however, is one call to MAX-HEAPIFY (A, 1), which leaves a max-heap
in A[1..(n — 1)]. The heapsort algorithm then repeats this process for the max-
heap of size n — 1 down to a heap of size 2. (See Exercise 6.4-2 for a precise loop
invariant.)

HEAPSORT(A)

1 BUILD-MAX-HEAP(A)
2 fori < length[A] downto 2

3 do exchange A[1] < A[i]
4 heap-size[A] < heap-size[A] — 1
5 MAX-HEAPIFY (A, 1)

Figure 6.4 shows an example of the operation of heapsort after the max-heap is
initially built. Each max-heap is shown at the beginning of an iteration of the for
loop of lines 2-5.

The HEAPSORT procedure takes time O (n1gn), since the call to BUILD-MAX-
HEAP takes time O(n) and each of the n — 1 calls to MAX-HEAPIFY takes
time O (Ign). '

Exercises

6.4-1
Using Figure 6.4 as a model, illustrate the operation of HEAPSORT on the array
A= (5,13,2,25,7,17,20,8, 4).

6.4-2
Argue the correctness of HEAPSORT using the following loop invariant:

At the start of each iteration of the for loop of lines 2-5, the subarray
A[l..i] is a max-heap containing the i smallest elements of A[1.. 7], and
the subarray A[i + 1..n] contains the n — i largest elements of A[1..n],
sorted.

6.4-3
What is the running time of heapsort on an array A of length » that is already sorted
in increasing order? What about decreasing order?

6.4-4
Show that the worst-case running time of heapsort is Q2 (n1g n).

6.4 The heapsort algorithm 137

@ (k)

Figure 6.4 The operation of HEAPSORT. (a) The max-heap data structure just after it has been
built by BUILD-MAX-HEAP. (b)—(j) The max-heap just after each call of MAX-HEAPIFY in line 5.
The value of i at that time is shown. Only lightly shaded nodes remain in the heap. (k) The resulting
sorted array A.

138

Chapter 6 Heapsort

6.4-5 *
Show that when all elements are distinct, the best-case running time of heapsort
is Q(nlgn).

6.5 Priority queues

Heapsort is an excellent algorithm, but a good implementation of quicksort, pre-
sented in Chapter 7, usually beats it in practice. Nevertheless, the heap data struc-
ture itself has enormous utility. In this section, we present one of the most popular
applications of a heap: its use as an efficient priority queue. As with heaps, there
are two kinds of priority queues: max-priority queues and min-priority queues. We
will focus here on how to implement max-priority queues, which are in turn based
on max-heaps; Exercise 6.5-3 asks you to write the procedures for min-priority
queues. :

A priority queue is a data structure for maintaining a set S of elements, each
with an associated value called a key. A max-priority queue supports the following
operations.

INSERT(S, x) inserts the element x into the set S. This operation could be written
as S <« SU{x}. ~.

MAXIMUM(S) returns the element of S with the largé:st key.
EXTRACT-MAX(S) removes and returns the element of S with the largest key.

INCREASE-KEY (S, x, k) increases the value of element x’s key to the new value k,
which is assumed to be at least as large as x’s current key value.

One application of max-priority queues is to schedule jobs on a shared computer.
The max-priority queue keeps track of the jobs to be performed and their relative
priorities. When a job is finished or interrupted, the highest-priority job is selected
from those pending using EXTRACT-MAX. A new job can be added to the queue
at any time using INSERT. ' '

Alternatively, a min-priority queue supports the operations INSERT, MINIMUM,
EXTRACT-MIN, and DECREASE-KEY. A min-priority queue can be used in an
event-driven simulator. The items in the queue are events to be simulated, each
with an associated time of occurrence that serves as its key. The events must be
simulated in order of their time of occurrence, because the simulation of an event
can cause other events to be simulated in the future. The simulation program uses
EXTRACT-MIN at each step to choose the next event to simulate. As new events are
produced, they are inserted into the min-priority queue using INSERT. We shall see
other uses for min-priority queues, highlighting the DECREASE-KEY operation, in
Chapters 23 and 24.

6.5 Priority queues 139

Not surprisingly, we can use a heap to implement a priority queue. In a given ap-
plication, such as job scheduling or event-driven simulation, elements of a priority
queue correspond to objects in the application. It is often necessary to determine
which application object corresponds to a given priority-queue element, and vice-
versa. When a heap is used to implement a priority queue, therefore, we often need
to store a handle to the corresponding application object in each heap element. The
exact makeup of the handle (i.e., a pointer, an integer, etc.) depends on the applica-
tion. Similarly, we need to store a handle to the corresponding heap element in each
application object. Here, the handle would typically be an array index. Because
heap elements change locations within the array during heap operations, an actual
implementation, upon relocating a heap element, would also have to update the ar-
ray index in the corresponding application object. Because the details of accessing
application objects depend heavily on the application and its implementation, we
shall not pursue them here, other than noting that in practice, these handles do need
to be correctly maintained. »

Now we discuss how to implement the operations of a max-priority queue. The
procedure HEAP-MAXIMUM implements the MAXIMUM operation in (1) time.

HEAP-MAXIMUM (A)
1 return A[1]

The procedure HEAP-EXTRACT-MAX implements the EXTRACT-MAX opera-
tion. It is similar to the for loop body (lines 3—5) of the HEAPSORT procedure.

HEAP-EXTRACT-MAX (A)

1 if heap-size[A] < 1

2 then error “heap underflow”

3 max < A[l]

4 A[1] < Alheap-size[A]]

5 heap-size[A] < heap-size[A] — 1
6 MAX-HEAPIFY (A, 1)

7 return max

The running time of HEAP-EXTRACT-MAX is O(lgn), since it performs only a
constant amount of work on top of the O (Ig n) time for MAX-HEAPIFY.

The procedure HEAP-INCREASE-KEY implements the INCREASE-KEY opera-
tion. The priority-queue element whose key is to be increased is identified by an
index i into the array. The procedure first updates the key of element A[i] to its
new value. Because increasing the key of A[i] may violate the max-heap prop-
erty, the procedure then, in a manner reminiscent of the insertion loop (lines 5-7)
of INSERTION-SORT from Section 2.1, traverses a path from this node toward the

140

Chapter 6 Heapsort

root to find a proper place for the newly increased key. During this traversal, it re-
peatedly compares an element to its parent, exchanging their keys and continuing
if the element’s key is larger, and terminating if the element’s key is smaller, since
the max-heap property now holds. (See Exercise 6.5-5 for a precise loop invariant.)

HEAP-INCREASE-KEY (A, i, key)

1 ifkey < A[i]

2 then error “new key is smaller than current key”
3 A[i] « key

4 whilei > 1 and A[PARENT(i)] < A[i]

5 do exchange A[i] <> A[PARENT(i)]

6 i < PARENT(i)

Figure 6.5 shows an example of a HEAP-INCREASE-KEY operation. The running
time of HEAP-INCREASE-KEY on an n-element heap is O(lgn), since the path
traced from the node updated in line 3 to the root has length O (Ign).

The procedure MAX-HEAP-INSERT implements the INSERT operation. It takes
as an input the key of the new element to be inserted into max-heap A. The proce-
dure first expands the max-heap by adding to the tree anew leaf whose key is —o0.
Then it calls HEAP-INCREASE-KEY to set the key of this new node to its correct
value and maintain the max-heap property. X

MAX-HEAP-INSERT (A, key)

1 heap-size[A] < heap-size[A] + 1

2 Alheap-size[A]] < —o0

3 HEAP-INCREASE-KEY (A, heap-size[A], key)

The running time of MAX-HEAP-INSERT on an n-element heap is O (Ign).
In summary, a heap can support any priority-queue operation on a set of size n
in O(lgn) time.

Exercises

6.5-1
Illustrate the operation of HEAP-EXTRACT-MAX on the heap A = (15, 13,9, 5,
12,8,7,4,0,6,2,1).

6.5-2

Illustrate the operation of MAX-HEAP-INSERT (A, 10) on the heap A = (15, 13,
9,5,12,8,7,4,0,6, 2, 1). Use the heap of Figure 6.5 as a model for the HEAP-
INCREASE-KEY call.

6.5 Priority queues 141

W

Figure 6.5 The operation of HEAP-INCREASE-KEY. (a) The max-heap of Figure 6.4(a) with a
node whose index is i heavily shaded. (b) This node has its key increased to 15. (c) After one
iteration of the while loop of lines 4-6, the node and its parent have exchanged keys, and the index i
moves up to the parent. (d) The max-heap after one more iteration of the while loop. At this point,
A[PARENT(i)] > A[i]. The max-heap property now holds and the procedure terminates.

6.5-3 ~

Write pseudocode for the procedures HEAP-MINIMUM, HEAP-EXTRACT-MIN,
HEAP-DECREASE-KEY, and MIN-HEAP-INSERT that implement a min-priority
queue with a min-heap.

6.5-4
Why do we bother setting the key of the inserted node to —oo in line 2 of MAX-
HEAP-INSERT when the next thing we do is increase its key to the desired value?

142 Chapter 6 Heapsort
6.5-5
Argue the correctness of HEAP-INCREASE-KEY using the following loop invari-
ant:
At the start of each iteration of the while loop of lines 4-6, the array
A[l.. heap-size[A]] satisfies the max-heap property, except that there may
be one violation: A[i] may be larger than A[PARENT(i)].
6.5-6
Show how to implement a first-in, first-out queue with a priority queue. Show
how to implement a stack with a priority queue. (Queues and stacks are defined in
Section 10.1.)
6.5-7
The operation HEAP-DELETE (A, i) deletes the item in node i from heap A. Give
an implementation of HEAP-DELETE that runs in O (Ign) time for an n-element
max-heap.
6.5-8
Give an O(nlgk)-time algorithm to merge k sorted lists into one sorted list,
where 7 is the total number of elements in all the input lists. (Hint: Use a min-
heap for k-way merging.)
Problems

6-1 Building a heap using insertion

The procedure BUILD-MAX-HEAP in Section 6.3 can be implemented by repeat-
edly using MAX-HEAP-INSERT to insert the elements into the heap. Consider the
following implementation:

BUILD-MAX-HEAP' (A)

1 heap-size[A] < 1

2 fori «<2to length[A]

3 do MAX-HEAP-INSERT (A, A[i])

a. Do the procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP’ always create
the same heap when run on the same input array? Prove that they do, or provide
a counterexample.

b. Show that in the worst case, BUILD-MAX-HEAP' requires ®(nlgn) time to
build an n-element heap.

Problems for Chapter 6 143

6-2 Analysis of d-ary heaps
A d-ary heap is like a binary heap, but (with one possible exception) non-leaf
nodes have d children instead of 2 children.

a. How would you represent a d-ary heap in an array?
b. What is the height of a d-ary heap of n elements in terms of n and d?

¢. Give an efficient implementation of EXTRACT-MAX in a d-ary max-heap. An-
alyze its running time in terms of d and n.

d. Give an efficient implementation of INSERT in a d-ary max-heap. Analyze its
running time in terms of d and n.

e. Give an efficient implementation of INCREASE-KEY (A, i, k), which first sets
A[i] < max(Al[i], k) and then updates the d-ary max-heap structure appropri-
ately. Analyze its running time in terms of d and n.

6-3 Young tableaus

An m x n Young tableau is an m x n matrix such that the entries of each row are
in sorted order from left to right and the entries of each column are in sorted order
from top to bottom. Some of the entries of a Young\tableau may be oo, which we
treat as nonexistent elements. Thus, a Young tableau can be used to hold r < mn
finite numbers.

a. Draw a4 x4 Young tableau containing the elements {9, 16, 3,2, 4, 8, 5, 14, 12}.

b. Argue that an m x n Young tableau Y is empty if Y[1, 1] = oco. Argue that Y
is full (contains mn elements) if Y [m, n] < oo.

¢. Give an algorithm to implement EXTRACT-MIN on a nonempty m x n Young
tableau that runs in O(m + n) time. Your algorithm should use a recur-
sive subroutine that solves an m x n problem by recursively solving either
an (m —1) x n or an m x (n — 1) subproblem. (Hint: Think about MAX-
HEAPIFY.) Define T (p), where p = m + n, to be the maximum running time
of EXTRACT-MIN on any m X n Young tableau. Give and solve a recurrence
for T'(p) that yields the O (m + n) time bound.

d. Show how to insert a new element into a nonfull m x n Young tableau in
O (m + n) time.

e. Using no other sorting method as a subroutine, show how to use an n x n Young
tableau to sort #2 numbers in O (n?) time.

144 Chapter 6 Heapsort

J. Give an O (m+n)-time algorithm to determine whether a given number is stored
in a given m x n Young tableau.

Chapter notes

The heapsort algorithm was invented by Williams [316], who also described how
to implement a priority queue with a heap. The BUILD-MAX-HEAP procedure
was suggested by Floyd [90].

We use min-heaps to implement min-priority queues in Chapters 16, 23, and 24.
We also give an implementation with improved time bounds for certain operations
in Chapters 19 and 20.

Faster implementations of priority queues are possible for integer data. A data
structure invented by van Emde Boas [301] supports the operations MINIMUM,
MAXIMUM, INSERT, DELETE, SEARCH, EXTRACT-MIN, EXTRACT-MAX, PRE-
DECESSOR, and SUCCESSOR in worst-case time O(lglg C), subject to the restric-
tion that the universe of keys is the set {1,2,...,C}. If the data are b-bit in-
tegers, and the computer memory consists of addressable b-bit words, Fredman
and Willard [99] showed how to implement MINIMUM in O(1) time and INSERT
and EXTRACT-MIN in O(y/Ign) time. Thorup [299] has improved the 0(,/1gn)
bound to O((lglgn)?) time. This bound uses an arhount of space unbounded in #,
but it can be implemented in linear space by using randomized hashing.

An important special case of priority queues occurs when the sequence of
[l ' EXTRACT-MIN operations is monotone, that is, the values returned by succes-
| sive EXTRACT-MIN operations are monotonically increasing over time. This case
I arises in several important applications, such as Dijkstra’s single-source shortest-

paths algorithm, which is discussed in Chapter 24, and in discrete-event simulation.
1 For Dijkstra’s algorithm it is particularly important that the DECREASE-KEY oper-
[l ation be implemented efficiently. For the monotone case, if the data are integers in
the range 1,2, ..., C, Ahuja, Melhorn, Orlin, and Tarjan [8] describe how to im-
I plement EXTRACT-MIN and INSERT in O(Ig C) amortized time (see Chapter 17
for more on amortized analysis) and DECREASE-KEY in O(1) time, using a data
structure called a radix heap. The O (Ig C') bound can be improved to O (,/1g C) us-
ing Fibonacci heaps (see Chapter 20) in conjunction with radix heaps. The bound
was further improved to O (Ig'/3*€ C) expected time by Cherkassky, Goldberg, and
Silverstein [58], who combine the multilevel bucketing structure of Denardo and
Fox [72] with the heap of Thorup mentioned above. Raman [256] further improved
these results to obtain a bound of O (min(lg"/** C, 1g'/3*¢ n)), for any fixed € > 0.
More detailed discussions of these results can be found in papers by Raman [256]
and Thorup [299].

