
20 Elementary Graph Algorithms 

This chapter presents methods for representing a graph and for searching a graph. 
Searching a graph means systematically following the edges of the graph so as to 
visit the vertices of the graph. A graph-searching algorithm can discover much 
about the structure of a graph. Many algorithms begin by searching their input 
graph to obtain this structural information. Several other graph algorithms elabo- 
rate on basic graph searching. Techniques for searching a graph lie at the heart of 
the ûeld of graph algorithms. 
Section 20.1 discusses the two most common computational representations of 

graphs: as adjacency lists and as adjacency matrices. Section 20.2 presents a sim- 
ple graph-searching algorithm called breadth-ûrst search and shows how to cre- 
ate a breadth-ûrst tree. Section 20.3 presents depth-ûrst search and proves some 
standard results about the order in which depth-ûrst search visits vertices. Sec- 
tion 20.4 provides our ûrst real application of depth-ûrst search: topologically sort- 
ing a directed acyclic graph. A second application of depth-ûrst search, ûnding the 
strongly connected components of a directed graph, is the topic of Section 20.5. 

20.1 Representations of graphs 

You can choose between two standard ways to represent a graph G D .V;E/: 
as a collection of adjacency lists or as an adjacency matrix. Either way applies 
to both directed and undirected graphs. Because the adjacency-list representation 
provides a compact way to represent sparse graphs4those for which jEj is much 
less than jV j 2 4it is usually the method of choice. Most of the graph algorithms 
presented in this book assume that an input graph is represented in adjacency-list 
form. You might prefer an adjacency-matrix representation, however, when the 
graph is dense4jEj is close to jV j 2 4or when you need to be able to tell quickly 
whether there is an edge connecting two given vertices. For example, two of the 
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Figure 20.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices 
and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation 
of G. 
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Figure 20.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8 
edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G. 

all-pairs shortest-paths algorithms presented in Chapter 23 assume that their input 
graphs are represented by adjacency matrices. 

The adjacency-list representation of a graph G D .V;E/ consists of an ar- 
ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency 
list AdjŒu� contains all the vertices v such that there is an edge .u; v/ 2 E. That 
is, AdjŒu� consists of all the vertices adjacent to u in G. (Alternatively, it can con- 
tain pointers to these vertices.) Since the adjacency lists represent the edges of a 
graph, our pseudocode treats the array Adj as an attribute of the graph, just like 
the edge set E. In pseudocode, therefore, you will see notation such as G: AdjŒu�. 
Figure 20.1(b) is an adjacency-list representation of the undirected graph in Fig- 
ure 20.1(a). Similarly, Figure 20.2(b) is an adjacency-list representation of the 
directed graph in Figure 20.2(a). 

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj, 
since an edge of the form .u; v/ is represented by having v appear in AdjŒu�. If G is 
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an undirected graph, the sum of the lengths of all the adjacency lists is 2 jEj, since 
if .u; v/ is an undirected edge, then u appears in v’s adjacency list and vice versa. 
For both directed and undirected graphs, the adjacency-list representation has the 
desirable property that the amount of memory it requires is ‚.V C E/. Finding 
each edge in the graph also takes ‚.V C E/ time, rather than just ‚.E/, since each 
of the jV j adjacency lists must be examined. Of course, if jEj D �.V / 4such as 
in a connected, undirected graph or a strongly connected, directed graph4we can 
say that ûnding each edge takes ‚.E/ time. 

Adjacency lists can also represent weighted graphs, that is, graphs for which 
each edge has an associated weight given by a weight function w W E ! R. For 
example, let G D .V;E/ be a weighted graph with weight function w. Then you 
can simply store the weight w.u; v/ of the edge .u; v/ 2 E with vertex v in u’s 
adjacency list. The adjacency-list representation is quite robust in that you can 
modify it to support many other graph variants. 
A potential disadvantage of the adjacency-list representation is that it provides 

no quicker way to determine whether a given edge .u; v/ is present in the graph 
than to search for v in the adjacency list AdjŒu�. An adjacency-matrix representa- 
tion of the graph remedies this disadvantage, but at the cost of using asymptotically 
more memory. (See Exercise 20.1-8 for suggestions of variations on adjacency lists 
that permit faster edge lookup.) 

The adjacency-matrix representation of a graph G D .V;E/ assumes that the 
vertices are numbered 1; 2; : : : ; jV j in some arbitrary manner. Then the adjacency- 
matrix representation of a graph G consists of a jV j  jV j matrix A D .a ij / such 
that 

a ij D 

( 
1 if .i; j / 2 E ; 
0 otherwise : 

Figures 20.1(c) and 20.2(c) are the adjacency matrices of the undirected and di- 
rected graphs in Figures 20.1(a) and 20.2(a), respectively . The adjacency matrix of 
a graph requires ‚.V 2 / memory, independent of the number of edges in the graph. 
Because ûnding each edge in the graph requires examining the entire adjacency 
matrix, doing so takes ‚.V 2 / time. 
Observe the symmetry along the main diagonal of the adjacency matrix in Fig- 

ure 20.1(c). Since in an undirected graph, .u; v/ and .v; u/ represent the same 
edge, the adjacency matrix A of an undirected graph is its own transpose: A D A T . 
In some applications, it pays to store only the entries on and above the diagonal of 
the adjacency matrix, thereby cutting the memory needed to store the graph almost 
in half. 
Like the adjacency-list representation of a graph, an adjacency matrix can rep- 

resent a weighted graph. For example, if G D .V;E/ is a weighted graph with 
edge-weight function w, you can store the weight w.u; v/ of the edge .u; v/ 2 E 
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as the entry in row u and column v of the adjacency matrix. If an edge does not 
exist, you can store a NIL value as its corresponding matrix entry, though for many 
problems it is convenient to use a value such as 0 or 1. 
Although the adjacency-list representation is asymptotically at least as space- 

efûcient as the adjacency-matrix representation, adjacency matrices are simpler, 
and so you might prefer them when graphs are reasonably small. Moreover, adja- 
cency matrices carry a further advantage for unweighted graphs: they require only 
one bit per entry. 

Representing attributes 
Most algorithms that operate on graphs need to maintain attributes for vertices 
and/or edges. We indicate these attributes using our usual notation, such as v: d 
for an attribute d of a vertex v. When we indicate edges as pairs of vertices, we 
use the same style of notation. For example, if edges have an attribute f , then we 
denote this attribute for edge .u; v/ by .u; v/: f . For the purpose of presenting and 
understanding algorithms, our attribute notation sufûces. 

Implementing vertex and edge attributes in real programs can be another story 
entirely. There is no one best way to store and access vertex and edge attributes. 
For a given situation, your decision will likely depend on the programming lan- 
guage you are using, the algorithm you are implementing, and how the rest of 
your program uses the graph. If you represent a graph using adjacency lists, 
one design choice is to represent vertex attributes in additional arrays, such as 
an array dŒ1 W jV j� that parallels the Adj array. If the vertices adjacent to u belong 
to AdjŒu�, then the attribute u: d can actually be stored in the array entry dŒu�. Many 
other ways of implementing attributes are possible. For example, in an object- 
oriented programming language, vertex attributes might be represented as instance 
variables within a subclass of a Vertex class. 

Exercises 
20.1-1 
Given an adjacency-list representation of a directed graph, how long does it take 
to compute the out-degree of every vertex? How long does it take to compute the 
in-degrees? 
20.1-2 
Give an adjacency-list representation for a complete binary tree on 7 vertices. Give 
an equivalent adjacency-matrix representation. Assume that the edges are undi- 
rected and that the vertices are numbered from 1 to 7 as in a binary heap. 


