
20 Elementary Graph Algorithms

This chapter presents methods for representing a graph and for searching a graph.
Searching a graph means systematically following the edges of the graph so as to
visit the vertices of the graph. A graph-searching algorithm can discover much
about the structure of a graph. Many algorithms begin by searching their input
graph to obtain this structural information. Several other graph algorithms elabo-
rate on basic graph searching. Techniques for searching a graph lie at the heart of
the ûeld of graph algorithms.
Section 20.1 discusses the two most common computational representations of

graphs: as adjacency lists and as adjacency matrices. Section 20.2 presents a sim-
ple graph-searching algorithm called breadth-ûrst search and shows how to cre-
ate a breadth-ûrst tree. Section 20.3 presents depth-ûrst search and proves some
standard results about the order in which depth-ûrst search visits vertices. Sec-
tion 20.4 provides our ûrst real application of depth-ûrst search: topologically sort-
ing a directed acyclic graph. A second application of depth-ûrst search, ûnding the
strongly connected components of a directed graph, is the topic of Section 20.5.

20.1 Representations of graphs

You can choose between two standard ways to represent a graph G D .V;E/:
as a collection of adjacency lists or as an adjacency matrix. Either way applies
to both directed and undirected graphs. Because the adjacency-list representation
provides a compact way to represent sparse graphs4those for which jEj is much
less than jV j 2 4it is usually the method of choice. Most of the graph algorithms
presented in this book assume that an input graph is represented in adjacency-list
form. You might prefer an adjacency-matrix representation, however, when the
graph is dense4jEj is close to jV j 2 4or when you need to be able to tell quickly
whether there is an edge connecting two given vertices. For example, two of the

550 Chapter 20 Elementary Graph Algorithms

1 2

3

4 5

1
2
3
4
5

2 5
1
2
2
4 1 2

5 3
4

4 5 3
1 0 0 1
0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

0
1
0
0
1

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

Figure 20.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation
of G.

1 2

5 4

1
2
3
4
5

2 4
5
6
2
4
6

5

1 0 1 0
0 0 0 1
0 0 0 1
1 0 0 0
0 0 1 0

0
0
0
0
0

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

3

6

6

6 0 0 0 0 0 1
0
0
1
0
0

6

Figure 20.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

all-pairs shortest-paths algorithms presented in Chapter 23 assume that their input
graphs are represented by adjacency matrices.

The adjacency-list representation of a graph G D .V;E/ consists of an ar-
ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency
list AdjŒu� contains all the vertices v such that there is an edge .u; v/ 2 E. That
is, AdjŒu� consists of all the vertices adjacent to u in G. (Alternatively, it can con-
tain pointers to these vertices.) Since the adjacency lists represent the edges of a
graph, our pseudocode treats the array Adj as an attribute of the graph, just like
the edge set E. In pseudocode, therefore, you will see notation such as G: AdjŒu�.
Figure 20.1(b) is an adjacency-list representation of the undirected graph in Fig-
ure 20.1(a). Similarly, Figure 20.2(b) is an adjacency-list representation of the
directed graph in Figure 20.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj,
since an edge of the form .u; v/ is represented by having v appear in AdjŒu�. If G is

20.1 Representations of graphs 551

an undirected graph, the sum of the lengths of all the adjacency lists is 2 jEj, since
if .u; v/ is an undirected edge, then u appears in v’s adjacency list and vice versa.
For both directed and undirected graphs, the adjacency-list representation has the
desirable property that the amount of memory it requires is ‚.V C E/. Finding
each edge in the graph also takes ‚.V C E/ time, rather than just ‚.E/, since each
of the jV j adjacency lists must be examined. Of course, if jEj D �.V / 4such as
in a connected, undirected graph or a strongly connected, directed graph4we can
say that ûnding each edge takes ‚.E/ time.

Adjacency lists can also represent weighted graphs, that is, graphs for which
each edge has an associated weight given by a weight function w W E ! R. For
example, let G D .V;E/ be a weighted graph with weight function w. Then you
can simply store the weight w.u; v/ of the edge .u; v/ 2 E with vertex v in u’s
adjacency list. The adjacency-list representation is quite robust in that you can
modify it to support many other graph variants.
A potential disadvantage of the adjacency-list representation is that it provides

no quicker way to determine whether a given edge .u; v/ is present in the graph
than to search for v in the adjacency list AdjŒu�. An adjacency-matrix representa-
tion of the graph remedies this disadvantage, but at the cost of using asymptotically
more memory. (See Exercise 20.1-8 for suggestions of variations on adjacency lists
that permit faster edge lookup.)

The adjacency-matrix representation of a graph G D .V;E/ assumes that the
vertices are numbered 1; 2; : : : ; jV j in some arbitrary manner. Then the adjacency-
matrix representation of a graph G consists of a jV j  jV j matrix A D .a ij / such
that

a ij D

(
1 if .i; j / 2 E ;
0 otherwise :

Figures 20.1(c) and 20.2(c) are the adjacency matrices of the undirected and di-
rected graphs in Figures 20.1(a) and 20.2(a), respectively . The adjacency matrix of
a graph requires ‚.V 2 / memory, independent of the number of edges in the graph.
Because ûnding each edge in the graph requires examining the entire adjacency
matrix, doing so takes ‚.V 2 / time.
Observe the symmetry along the main diagonal of the adjacency matrix in Fig-

ure 20.1(c). Since in an undirected graph, .u; v/ and .v; u/ represent the same
edge, the adjacency matrix A of an undirected graph is its own transpose: A D A T .
In some applications, it pays to store only the entries on and above the diagonal of
the adjacency matrix, thereby cutting the memory needed to store the graph almost
in half.
Like the adjacency-list representation of a graph, an adjacency matrix can rep-

resent a weighted graph. For example, if G D .V;E/ is a weighted graph with
edge-weight function w, you can store the weight w.u; v/ of the edge .u; v/ 2 E

552 Chapter 20 Elementary Graph Algorithms

as the entry in row u and column v of the adjacency matrix. If an edge does not
exist, you can store a NIL value as its corresponding matrix entry, though for many
problems it is convenient to use a value such as 0 or 1.
Although the adjacency-list representation is asymptotically at least as space-

efûcient as the adjacency-matrix representation, adjacency matrices are simpler,
and so you might prefer them when graphs are reasonably small. Moreover, adja-
cency matrices carry a further advantage for unweighted graphs: they require only
one bit per entry.

Representing attributes
Most algorithms that operate on graphs need to maintain attributes for vertices
and/or edges. We indicate these attributes using our usual notation, such as v: d
for an attribute d of a vertex v. When we indicate edges as pairs of vertices, we
use the same style of notation. For example, if edges have an attribute f , then we
denote this attribute for edge .u; v/ by .u; v/: f . For the purpose of presenting and
understanding algorithms, our attribute notation sufûces.

Implementing vertex and edge attributes in real programs can be another story
entirely. There is no one best way to store and access vertex and edge attributes.
For a given situation, your decision will likely depend on the programming lan-
guage you are using, the algorithm you are implementing, and how the rest of
your program uses the graph. If you represent a graph using adjacency lists,
one design choice is to represent vertex attributes in additional arrays, such as
an array dŒ1 W jV j� that parallels the Adj array. If the vertices adjacent to u belong
to AdjŒu�, then the attribute u: d can actually be stored in the array entry dŒu�. Many
other ways of implementing attributes are possible. For example, in an object-
oriented programming language, vertex attributes might be represented as instance
variables within a subclass of a Vertex class.

Exercises
20.1-1
Given an adjacency-list representation of a directed graph, how long does it take
to compute the out-degree of every vertex? How long does it take to compute the
in-degrees?
20.1-2
Give an adjacency-list representation for a complete binary tree on 7 vertices. Give
an equivalent adjacency-matrix representation. Assume that the edges are undi-
rected and that the vertices are numbered from 1 to 7 as in a binary heap.

