. the first heads.
¢ random vari-
d the memory-
1ds to the num-
bability p. Let
ie identity from

XY =1].

In this case, let
be Z. Then, by

1 geometric ran-
a1 have the same

actation is often
ometric random

ippose that each
ne of every type
ch box is chosen
that you do not

2.4 THE GEOMETRIC DISTRIBUTION

collaborate with others to collect coupons, how many boxes of cereal must you buy
before you obtain at least one of every type of coupon? This simple problem arises in
many different scenarios and will reappear in several places in the book.

Let X be the number of boxes bought until at least one of every type of coupon is
obtained. We now determine E[X]. If X; is the number of boxes bought while you had
exactly i — 1 different coupons, then clearly X = >"7_ X;.

The advantage of breaking the random variable X into a sum of n random variables
X;,i =1,...,n, is that each X; is a geometric random variable. When exactly i — 1
coupons have been found, the probability of obtaining a new coupon is

i—1

pi=1-—

Hence, X; is a geometric random variable with parameter p;, and

1 n
EX]l=—=——7T—.
Di n—i+1

Using the linearity of expectations, we have that

n

E[X] =E[Z Xi]

i=1

The summation y_;_, 1/i is known as the harmonic number H(n), and as we show
next, H(n) = Inn + ©(1). Thus, for the coupon collector’s problem, the expected
number of random coupons required to obtain all # coupons is nlnn + O (n).
Lemma 2.10: The harmonic number H(n) = Y _:_, 1/i satisfies H(n) = Inn+ ©(1).
Proof: Since 1/x is monotonically decreasing, we can write

n l n]
Inn = / —dx < -
x=l X kX::l k

and

DISCRETE RANDOM VARIABLES AND EXPECTATION

— 1
! f)=—
. Lx]
" '5.: . 1
12 : 12 : i(x) =
173 .- o - 173 - -
U(n-1) L. 1/(n-1)
1/n R ; B s 1/n 4 5 S P, T—r—
1/(n+1) i g : i i 1/(n+1) mman G '5;51]
1 2 3 ceeon-l ;1 nwltl 1 2 3 s on-l III nll
(a) Approximating 1/x from above. (b) Approximating 1/x from below.

Figure 2.1: Approximating the area below f(x) = 1/x.

This is clarified in Figure 2.1, where the area below the curve f(x) = 1/x corre-
sponds to the integral and the areas of the shaded regions correspond to the summations

t_1/kand Y i, 1/k.

Hence Inn < H(n) < Inn + 1, proving the claim. |

As a simple application of the coupon collector’s problem, suppose that packets are
sent in a stream from a source host to a destination host along a fixed path of routers.
The host at the destination would like to know which routers the stream of packets has
passed through, in case it finds later that some router damaged packets that it processed.
If there is enough room in the packet header, each router can append its identification
number to the header, giving the path. Unfortunately, there may not be that much room
available in the packet header.

Suppose instead that each packet header has space for exactly one router identi-
fication number, and this space is used to store the identification of a router chosen
uniformly at random from all of the routers on the path. This can actually be accom-
plished easily; we consider how in Exercise 2.18. Then, from the point of view of the
destination host, determining all the routers on the path is like a coupon collector’s
problem. If there are n routers along the path, then the expected number of packets in
the stream that must arrive before the destination host knows all of the routers on the
pathisnH(n) =nlnn + O(n).

2.5. Application: The Expected Run-Time of Quicksort

Quicksort is a simple — and, in practice, very efficient — sorting algorithm. The input
is a list of n numbers xi, X, ...,x,. For convenience, we will assume that the num-
bers are distinct. A call to the Quicksort function begins by choosing a pivor element
from the set. Let us assume the pivot is x. The algorithm proceeds by comparing every

34

) = 1/x corre-
he summations

hat packets are
path of routers.
1 of packets has
jat it processed.
ts identification
that much room

e router identi-
a router chosen
1ally be accom-
it of view of the
1ipon collector’s
yer of packets in
e routers on the

ithm. The input
1e that the num-
a pivot element
>omparing every

2.5 APPLICATION: THE EXPECTED RUN-TIME OF QUICKSORT

Quicksort Algorithm:
Input: A list S = {xi,...,x,} of n distinct elements over a totally ordered
universe.

Output: The elements of S in sorted order.

1. If S has one or zero elements, return S. Otherwise continue.

2. Choose an element of S as a pivot; call it x.

3. Compare every other element of S to x in order to divide the other elements
into two sublists:
(a) S; has all the elements of S that are less than x;
(b) S, has all those that are greater than x.

4. Use Quicksort to sort S and S,.

5. Return the list Sy, x, S».

Algorithm 2.1: Quicksort.

other element to x, dividing the list of elements into two sublists: those that are less
than x and those that are greater than x. Notice that if the comparisons are performed
in the natural order, from left to right, then the order of the elements in each sublist is
the same as in the initial list. Quicksort then recursively sorts these sublists.

In the worst case, Quicksort requires $2(n%) comparison operations. For example,
suppose our input has the form x; = n,x, =n —1, ..., x,-1 = 2, x, = 1. Suppose
also that we adopt the rule that the pivot should be the first element of the list. The
first pivot chosen is then n, so Quicksort performs n — 1 comparisons. The division has
yielded one sublist of size 0 (which requires no additional work) and another of size

n — 1, with the order n — 1,n — 2,...,2,1. The next pivot chosen is n — 1, so Quick-
sort performs 7 — 2 comparisons and is left with one group of size n — 2 in the order
n—2,n—3,...,2,1. Continuing in this fashion, Quicksort performs
nn—1) .
n-D+mn—-2)+---+24+1= Tcomparlsons‘

This is not the only bad case that leads to ©2(n?) comparisons; similarly poor perfor-
mance occurs if the pivot element is chosen from among the smallest few or the largest
few elements each time.

We clearly made a bad choice of pivots for the given input. A reasonable choice of
pivots would require many fewer comparisons. For example, if our pivot always split
the list into two sublists of size at most [n/2], then the number of comparisons C(n)
would obey the following recurrence relation:

C(n) <2C([n/2]) + O(n).

The solution to this equation yields C(n) = O(nlogn), which is the best possible re-
sult for comparison-based sorting. In fact, any sequence of pivot elements that always

35

DISCRETE RANDOM VARIABLES AND EXPECTATION

split the input list into two sublists each of size at least cn for some constant ¢ would
yield an O(nlogn) running time.

This discussion provides some intuition for how we would like pivots to be chosen.
In each iteration of the algorithm there is a good set of pivot elements that split the
input list into two almost equal sublists; it suffices if the sizes of the two sublists are
within a constant factor of each other. There is a also a bad set of pivot elements that do
not split up the list significantly. If good pivots are chosen sufficiently often, Quicksort
will terminate quickly. How can we guarantee that the algorithm chooses good pivot
elements sufficiently often? We can resolve this problem in one of two ways.

First, we can change the algorithm to choose the pivots randomly. This makes Quick-
sort a randomized algorithm; the randomization makes it extremely unlikely that we
repeatedly choose the wrong pivots. We demonstrate shortly that the expected number
of comparisons made by a simple randomized Quicksort is 27 Inn + O(n), matching
(up to constant factors) the 2 (n log n) bound for comparison-based sorting. Here, the
expectation is over the random choice of pivots.

A second possibility is that we can keep our deterministic algorithm, using the first
list element as a pivot, but consider a probabilistic model of the inputs. A permuta-
tion of a set of n distinct items is just one of the n! orderings of these items. Instead of
looking for the worst possible input, we assume that the input items are given to us in
a random order. This may be a reasonable assumption for some applications; alterna-
tively, this could be accomplished by ordering the input list according to a randomly
chosen permutation before running the deterministic Quicksort algorithm. In this case,
we have a deterministic algorithm but a probabilistic analysis based on a model of the
inputs. We again show in this setting that the expected number of comparisons made
is 2nlnn + O(n). Here, the expectation is over the random choice of inputs.

The same techniques are generally used both in analyses of randomized algorithms
and in probabilistic analyses of deterministic algorithms. Indeed, in this application the
analysis of the randomized Quicksort and the probabilistic analysis of the deterministic
Quicksort under random inputs are essentially the same.

Let us first analyze Random Quicksort, the randomized algorithm version of Quick-
sort.

Theorem 2.11: Suppose that, whenever a pivot is chosen for Random Quicksort, it is
chosen independently and uniformly at random from all possibilities. Then, for any in-
put, the expected number of comparisons made by Random Quicksort is 2nInn+ o(n).

Proof: Letyy,ys,..., Yy, bethe same values as the input values xy, x2, ..., X, but sorted
in increasing order. Fori < j, let X;; be a random variable that takes on the value 1 if H
yi and y; are compared at any time over the course of the algorithm, and O otherwise.
Then the total number of comparisons X satisfies

n—1 n
X=E E Xij»
i=1 j=i+l
and

stant ¢ would

to be chosen.
that split the
70 sublists are
:ments that do
ten, Quicksort
ses good pivot
ways.
makes Quick-
likely that we
sected number
'(n), matching
ting. Here, the

using the first
s. A permuta-
ms. Instead of
s given to us in
ations; alterna-
to a randomly
m. In this case,
a model of the
iparisons made
nputs.

zed algorithms
application the
1e deterministic

rsion of Quick-

Quicksort, it is
hen, for any in-
2nlnn+0(n).

.., X, but sorted
on the value 1 if
ind 0 otherwise.

Y

2.5 APPLICATION: THE EXPECTED RUN-TIME OF QUICKSORT

n—1 n

E[X] = E[Z > X,,}

i=1 j=i+l
n—1 n

= E E E[X;;]
i=1 j=i+l

by the linearity of expectations.

Since X;; is an indicator random variable that takes on only the values 0 and 1, E[X;;]
is equal to the probability that X;; is 1. Hence all we need to do is compute the prob-
ability that two elements y; and y; are compared. Now, y; and y; are compared if and
only if either y; or y; is the first pivot selected by Random Quicksort from the set Y =
{yi» Yi+1s--->¥j—1,y;}. This is because if y; (or y;) is the first pivot selected from this
set, then y; and y; must still be in the same sublist, and hence they will be compared.
Similarly, if neither is the first pivot from this set, then y; and y; will be separated into
distinct sublists and so will not be compared.

Since our pivots are chosen independently and uniformly at random from each sub-
list, it follows that, the first time a pivot is chosen from Y7, it is equally likely to be any
element from this set. Thus the probability that y; or y; is the first pivot selected from
Y, which is the probability that X;; = 1,is 2/(j — i + 1). Using the substitution k =
Jj — 1 + 1 then yields

n—1 n

2
BXI=2 2 T

i=1 j=i+l

n—1 n—i+1

2
_f=1 kg;k

n n+l—k

2
=X 3
k=2 i=1
n 2
=§(n+l—k)%
:((n—i—l)i%)—ﬂn—l)
k:2k
n 1
:(2n+2)§z—4n.

Notice that we used a rearrangement of the double summation to obtain a clean form
for the expectation.

Recalling that the summation H(n) = Z:l 1/k satisfies H(n) = Inn + ©(1), we
have E[X] = 2nlnn 4+ ©(n). [|

37

DISCRETE RANDOM VARIABLES AND EXPECTATION

Next we consider the deterministic version of Quicksort, on random input. We assume
that the order of the elements in each recursively constructed sublist is the same as in
the initial list.

Theorem 2.12: Suppose that, whenever a pivot is chosen for Quicksort, the first ele-
ment of the sublist is chosen. If the input is chosen uniformly at random from all possible
permutations of the values, then the expected number of comparisons made by Deter-
ministic Quicksort is 2nlnn + O(n).

Proof: The proof is essentially the same as for Random Quicksort. Again, y; and y;
are compared if and only if either y; or y; is the first pivot selected by Quicksort from
the set Y. Since the order of elements in each sublist is the same as in the original
list, the first pivot selected from the set Y/ is just the first element from Y in the in-
put list, and since all possible permutations of the input values are equally likely, every
element in Y¥ is equally likely to be first. From this, we can again use linearity of ex-
pectations in the same way as in the analysis of Random Quicksort to obtain the same
expression for E[X]. -4

2.6. Exercises

Exercise 2.1: Suppose we roll a fair k-sided die with the numbers 1 through k on the
die’s faces. If X is the number that appears, what is E[X]?

Exercise 2.2: A monkey types on a 26-letter keyboard that has lowercase letters only.
Each letter is chosen independently and uniformly at random from the alphabet. If the
monkey types 1,000,000 letters, what is the expected number of times the sequence
“proof” appears?

Exercise 2.3: Give examples of functions f and random variables X where E[f(X)] <

FE[XD, E[f(X)] = f(E[X]), and E[f(X)] = f(E[XD).
Exercise 2.4: Prove that E[X*] > E[X]* for any even integer k > 1.

Exercise 2.5: If X is a B(n,1/2) random variable with n > 1, show that the probabil-
ity that X is evenis 1/2.

Exercise 2.6: Suppose that we independently roll two standard six-sided dice. Let X|
be the number that shows on the first die, X, the number on the second die, and X the
sum of the numbers on the two dice.

(a) Whatis E[X | X, is even]?

(b) Whatis E[X | X; = X,]?

(c) Whatis E[X; | X =9]?

(d) Whatis E[X; — X, | X = k] for k in the range [2,12]?

38

