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This is a set of notes that are based on some initial notes by Chris Schwiegelshohn and I
have also used ideas from various books, especially by the book of Strang [2], and by Blum et
al. [1]. I recommend you the former for gaining intuition on linear algebra, and the latter if you
want to delve into various theoretical topics in data mining and data science.

The problem with the tecniques based on linear algebra is that because we live in a three-
dimensional world, we generally do not have intuition about what happens in higher dimensions,
which is where our data live as we typically represent them. Whereas some parts of our intuition
in three dimensions carry to higher dimensions, many other parts fail. Thus we need to use
math to understand what is gong on, and to gain new intuition about such spaces.

My advice when you study these notes, is to not just read the math, but to try to understand
what each expression means, geometrically. For example1 that, if the columns of W form an
orthonormal basis of a k-dimensional subspace of Rd, then∥∥AWkWk

T
∥∥2
F
=

n∑
i=1

∥∥A(i)WkWk
T
∥∥2
2

is the sum of the squares of the lengths of the projections of each row of A on this subspace,
and that

∥AWk∥2F =

n∑
i=1

∥∥A(i)Wk

∥∥2
2

is the sum over each row of A of the square sum of the squares of the lengths of the row’s
projection on the columns of W. This, for example, means that by the Pythagorean theorem
the two quantities are equal, something, that by just comparing the two formulae is not obvious.

1 Introduction

Assume that we have n d-dimensional data points. One way to represent them is using a matrix
A ∈ Rn×d, where each line A(i) ∈ Rd represents the ith data point (see Figure 1):

A =


A(1)

A(2)
...

A(n)

 .

In some books you may see columns corresponding to points and rows to dimensions, then
everything holds but considering AT instead of A.

1Of course this example does not make sense the first time that you read it but hopefully you will understand
it after you study these notes.
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Figure 1: Representation of each point as a row of matrix A.

This viewpoint of our dataset as a matrix, allows us to use tools from linear algebra to study
our data.

In these notes we will see the prinicpal-component analysis (PCA), which is essentially the
application of the singular-value decomposition to data analysis.

We start with some linear-algebra background.

2 Background in Linear Algebra

In this section we will present some basic notions from linear algebra, which will allow us to
understand more easily the material. We start by presenting some notation.

2.1 Definitions and Notation

For a given matrix A, we use Aij do denote the individual element. We use A(i) to denote the

ith row of A. We use A(j) to denote the jth column of A.
If x, y ∈ Rd we denote their dot product by xT y.
Two vectors vi and vj are orthogonal to each other if vT

i vj = 0. A collection of k vectors
{v1, . . . ,vk} is orthonormal if each vector has unit ℓ2 norm (∥vi∥2 = 1) and if each vector vi is
orthogonal to every other vector vj in the collection.

A matrix V ∈ Rn×d, with n ≥ d, is semi-orthogonal if the set of its columns is orthonormal.
Then we have that VTV = I(= Id) (but VVT ̸= In, unless n = d).

2.2 Matrix Multiplication

Consider the matrices
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A =

1 2 3 −5
4 0 2 0
2 −1 1 3


and

B =


4 0
1 3
7 −1
3 0


Then the usual way to compute the product AB is by setting the value of element (AB)ij

to be the dot product of the ith row of A with the jth column of B:

(AB)ij = A(i) ·B(j).

Thus we get

AB =

1 2 3 −5
4 0 2 0
2 −1 1 3

 ·


4 0
1 3
7 −1
3 0

 =

12 3
30 −2
23 −4


However, notice that we can express this multiplication as a summation of 4 rank-1 matrices,

with the ith term being the product of the ith column of A with the ith row of B:

AB =

14
2

 ·
[
4 0

]
+

 2
0
−1

 ·
[
1 3

]
+

32
1

 ·
[
7 −1

]
+

−5
0
3

 ·
[
3 0

]

=

 4 0
16 0
8 0

+

 2 6
0 0
−1 −3

+

21 −3
14 −2
7 −1

+

−15 0
0 0
9 0

 =

12 3
30 −2
23 −4


More generally:

AB =

 | | |
A(1) A(2) · · · A(d)

| | |

 ·


B(1)

B(2)
...

B(d)


=

 |
A(1)

|

 ·
[

B(1)

]
+

 |
A(2)

|

 ·
[

B(2)

]
+ · · ·+

 |
A(d)

|

 ·
[

B(d)

]
.

Mathematically, if A ∈ Rn×d and B ∈ Rd×ℓ, then

AB = A(1) ·B(1) +A(2) ·B(2) + · · ·+A(d) ·B(d) =

d∑
r=1

A(r) ·B(r).

This is because in both ways of doing the multiplication, we obtain

(AB)ij =
d∑

r=1

AirBrj .

It turns out that this view of matrix multiplication is often very useful to understand what
is going on when we work with matrices.
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(a) x ∈ R2, so the subspace orthogonal to v
has dimension 2− 1 = 1.
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(b) x ∈ R3, so the subspace orthogonal to v
has dimension 3− 1 = 2.

Figure 2: Projection of vector x on the direction of vector v. Vector x = y+z can be decomposed
to two parts: y, the projection on v, and z, the projection on the subspace orthogonal to v.

2.3 Projection onto a Vector

PCA is about projection of points and matrices on subspaces, so we start with the projection
of a vector onto another vector. See Figure 2. Consider some vector x ∈ Rd and some unit
vector v ∈ Rd. Let y be the projection of x on v. Then, if the angle between x and v is equal
to θ ≤ 90◦, the length of the projection y equals just the dot product of x and v:

∥y∥2 = ∥x∥2 cos θ = ∥x∥2
vTx

∥v∥2 ∥x∥2
= vTx.

Then the (vector) projection y equals the unit vector v times this length:

y = vvTx.

Thus to project the point x on v it is enough to left-multiply x with vvT ; recall that for matrix
multiplication the associative property is true: (AB)C = A(BC).

If θ > 90◦ (Figure 3) then we have that

∥y∥2 = ∥x∥2 cos(180◦ − θ) = −∥x∥2 cos(θ) = −∥x∥2
vTx

∥v∥2 ∥x∥2
= −vTx,

and the projection is a vector of the opposite direction of v, so it equals

y = (−v)(−vTx) = vvTx,

giving the same result.
Given that A contains our points as row vectors, let us see how we can project a point

represented as a row vector. We consider the row vector xT ∈ R1×d. Then, using the fact that
(AB)T = BTAT , we obtain the row vector:

yT = xTvvT .
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Figure 3: Projection of vector x on the direction of vector v with angle higher than 90◦.

Therefore, the projection of the data point A(i) on v is simply A(i)vv
T . So, if we want to

project the entire dataset A on the direction v, we can multiply to the right with vvT :

AvvT .

The ith row of the resulting matrix is the projection of A(i) on v.
The projection, z (see Figure 2), of x on the (d−1)-dimensional subspace that is orthogonal

to v is
z = x− vvTx = (I− vvT )x.

Similarly, given our dataset A, we can decompose it into two parts, the projection of each point
on the direction of v: AvvT , and to the subspace orthogonal to v: A(I− vvT ).

2.4 Projection on a Subspace

In the previous section we projected x on a single vector. We will now generalize by projecting
to a higher-dimensional subspace. Consider the subspace defined (spanned as we say) by the
orthonormal set of k vectors {v1, . . . ,vk}, where each vi ∈ Rd. Then the projection y of x on
the subspace spanded by the k vectors equals to the sum of the projections on each vector:

y = v1v
T
1 x+ · · ·+ vkv

T
k x = (v1v

T
1 + · · ·+ vkv

T
k )x.

Define the d× k matrix Vk:

Vk =

 | | |
v1 v2 · · · vk

| | |

 .

Then, from Section 2.2, we obtain that the projection of x on the subpsace of Rd defined by
the k columns of the semi-orthogonal matrix Vk equals

y = VkVk
Tx.

Of course this subspace has dimension k, equal to the rank of Vk.
The projection z of x to the orthogonal subspace (which has dimension d− k) is

z = x−VkVk
Tx = (I−VkVk

T )x.

As with the case of Section 2.3, the projection of our n×d matrix A on the subspace defined
by Vk equals to

AVkVk
T ,

and the projection to the orthogonal subspace equals to

A−AVkVk
T = A(I−VkVk

T ).
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Note that for any given subspace of dimension k > 1, there are infinite possible orthonormal
bases: one can take an orthonormal basis (v1, . . . ,vk) of the subspace and rotate it on the
subspace to obtain another orthonormal basis (v′

1, . . . ,v
′
k) for the same subspace—think of the

rotation of an orthonormal basis on the plane. Then, the projection of the dataset A on the
subspace is the same no matter what basis we use, so for the corresponding matrix V′

k we have:

AVkVk
T = AV′

kV
′
k
T

and
A(I−VVT ) = A(I−V′V′T ).

3 Variance

PCA is based on the variance of the dataset. First we revisit the familiar case in which the data
are points in R, and then we generalize to higher dimensions.

3.1 One Dimension

Consider a set of n samples x = (x1, . . . xn)
T , with xi ∈ R. The empirical mean of these samples

is defined as
1

n

∑
i=1

xi.

We also define the expected second moment as

1

n

∑
i=1

x2i ,

and then the empirical variance is defined as

1

n

n∑
i=1

xi −
1

n

n∑
j=1

xj

2

=
1

n

n∑
i=1

x2i −
(
1

n

n∑
i=1

xi

)2

,

recalling the formula for the variance: E
[
(X −E[X])2

]
= E

[
X2
]
−E[X]2.

As a matter of fact, we often center the data such that the mean is 0 and then the variance
reduces to 1

n

∑n
i=1 x

2
i . In this case, we may interpret the variance as the (scaled) squared

Euclidean norm of the vector containing the samples. Note that, by definition, the variance of
the values xi is the second moment of them after being centered. In other words, centering the
data does not changes their variance. In general, for a vector x ∈ Rn, with x = (x1, . . . , xn)

T ,
∥x∥p = p

√∑n
i=1 |xi|p, hence for normalized data sets, the variance equals the scaled 2-norm of

x: 1
n ∥x∥22. We also note that xTx = ∥x∥22 for any vector x.

3.2 Multiple Dimensions

Let us now consider the notions of the previous section in higher dimensions, that is, the
samples of A(i) are no longer numbers, but vectors in Rd. The empirical mean translates
straightforwardly and is also commonly known as the centroid:

1

n

n∑
i=1

A(i).
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Figure 4: Projection of the dataset A onto the direction of vector v. The projection of point
A(i) is A(i)vv

T and the variance Varv[A] is the variance of the lengths of the projections, that
is, the distances between the origin and the blue points.

The notion of variance is not as easy to generalize. Ideally, we would like to retain the notion
that the variance quantifies the spread of the data set with respect to the mean (or centroid).
The difficulty of extending this notion is that the spread is different along different directions.
This is properly captured by the covariance matrix. Here instead, our notion of generalization
will be simpler, as we are looking for a single number, rather than the more complex spectral
structure included in the covariance matrix. Instead, we define the directional variance along
an arbitrary unit vector v as

Varv[A]
△
=

1

n

n∑
i=1

A(i) −
1

n

n∑
j=1

A(j)

 · v

2

.

To understand the definition, note that, as we saw in Section 2.3, the length of the projection of
each vector on the direction of v, is given by the absolute value of the dot product

∣∣A(i) · v
∣∣—

note that A(i) is a row vector, so we don’t take the transpose. Similarly, the length of the

projection on v of the centroid of all the points A(i) is
∣∣∣( 1

n

∑n
j=1A(j)

)
· v
∣∣∣. Therefore, the

variance of the length of the projections of the n points A(i) on the direction of v is given by
the above definition. See Figure 4.

Again, for centered inputs with
∑n

j=1A(j) = 0, this reduces to

Varv[A] =
1

n

n∑
i=1

(
A(i) · v

)2
=

1

n
∥Av∥22 .

Similarly to the one-dimensional case, centering the data does not changes their variance. Geo-
metrically, this expression means that we project all points along the direction v and compute
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the variance of a (now) 1-dimensional set of samples. To capture the entire variance of the point
set, we pick an arbitrary orthogonal basis V = {v1,v2, . . . ,vd} of Rd and compute

Var[A]
△
=

d∑
j=1

Varvj
[A] =

1

n

d∑
j=1

∥Avj∥22 =
1

n

d∑
j=1

n∑
i=1

(
A(i) · vj

)2
.

The fact that in the above definition of Var[A] there is no indication of the basis, implies
that the variance does not depend on the basis chosen. We prove thin in the next lemma, which
we prove for the general case where the points are not centered.

Lemma 1. Consider two orthonormal bases of Rd: V = {v1,v2, . . . ,vd} and W = {w1,w2, . . . ,wd}.
Then we have that

d∑
j=1

Varvj

[
A(i)

]
=

d∑
j=1

Varwj

[
A(i)

]
.

Proof. BecauseW is a basis for Rd, each vector vk can be expressed as a linear combination vk =∑d
j=1 αk,j ·wj and any vector wj can be expressed as a linear combination wj =

∑d
k=1 βj,k ·vk.

Notice that, because wr
Twr = 1 and wr

Twj = 0 for r ̸= j, we have that:

vk
Twj =

d∑
r=1

αk,r ·wr
Twj = αk,j

and, similarly, that

wj
Tvk =

d∑
r=1

βj,r · vr
Tvk = βj,k.

Therefore, βj,k = αk,j , so

wj =
d∑

k=1

αk,j · vk.

Notice also that

1 = wj
Twj =

(
d∑

k=1

αk,j · vk

)T

·
(

d∑
k=1

αk,j · vk

)

=

d∑
k=1

α2
k,jvk

Tvk +

d∑
k=1

d∑
r=1
r ̸=k

αk,rvk
Tvr =

d∑
k=1

α2
k,j ,

(1)

and for j ̸= r

0 = wj
Twr =

(
d∑

k=1

αk,j · vk

)T

·
(

d∑
k=1

αk,r · vk

)

=

d∑
k=1

αk,jαk,rvk
Tvk +

d∑
k=1

d∑
ℓ=1
ℓ̸=k

αk,jαℓ,rvk
Tvℓ =

d∑
k=1

αk,jαk,r.

(2)
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Then, let as define xi
T = A(i) − 1

n

∑n
j=1A(j) and we have:

Varvk

[
A(i)

]
=

1

n

n∑
i=1

A(i) −
1

n

n∑
j=1

A(j)

vk

2

=
1

n

n∑
i=1

(
xi

T · vk

)2

=
1

n

n∑
i=1

xi
T

d∑
j=1

αk,j ·wj

2

=
1

n

n∑
i=1

 d∑
j=1

xi
T ·wj · αk,j

2

=
1

n

n∑
i=1

d∑
j=1

(
xi

T ·wj

)2
α2
k,j +

1

n

n∑
i=1

d∑
j=1

d∑
r=1
r ̸=j

xi
T ·wj · xi

T ·wr · αk,jαk,r

=

d∑
j=1

(
1

n

n∑
i=1

(
xi

T ·wj

)2)
α2
k,j +

1

n

n∑
i=1

d∑
j=1

d∑
r=1
r ̸=j

xi
T ·wj · xi

T ·wr · αk,jαk,r

=

d∑
j=1

Varwj

[
A(i)

]
· α2

k,j +
1

n

n∑
i=1

d∑
j=1

d∑
r=1
r ̸=j

xi
T ·wj · xi

T ·wr · αk,jαk,r

Summing up over all vk, we we then obtain

d∑
k=1

Varvk

[
A(i)

]
=

d∑
j=1

Varwj

[
A(i)

]
·

d∑
k=1

α2
k,j +

1

n

n∑
i=1

d∑
j=1

d∑
r=1
r ̸=j

xi
Twjxi

Twr ·
d∑

k=1

αk,jαk,r

=

d∑
j=1

Varwj

[
A(i)

]
,

using Equations (1) and (2).

As in the one dimensional case, our notion of high dimensional variance has an algebraic
interpretation. The Frobenius norm of a matrix A ∈ Rn×d is defined as

∥A∥F =

√√√√ n∑
i=1

d∑
j=1

A2
i,j .

If the centroid is equal to the origin, the squared Frobenius norm is, up to scale, equal to the
multidimensional variance, as well as the 1-means cost. To see the former, consider the basis
{ek}nk=1, where ek is the vector that is equal to 1 at the kth coordinate and 0 everywhere else.
We have

Varek
[
A(i)

]
= E

[(
A(i)ek

)2]
=

1

n

n∑
i=1

A(i)
2
k
=

1

n

n∑
i=1

A2
ik

and

∥A∥2F =

d∑
k=1

n∑
i=1

A2
ik = n

d∑
k=1

Varek
[
A(i)

]
= nVar[A] .
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Eigenvalues/Eigenvectors and Singular Values/Singular Vectors

Let us now make a pause to look at some important notions for matrices. We
start by recalling the following definition:

Definition 2 (Eigenvectors and eigenvalues). Let A ∈ Rd×d. A vector v ∈ Rd with
unit Euclidean norm is a (right) eigenvector with eigenvalue e if

• Av = ev and

• vTA = evT .

The concepts of eigenvalues and eigenvectors are of the most central in linear
algebra. However, they have the disadvantage that they are only applied on square
matrices.

Therefore, for general matrices (such as our matrix A) we have some more general
concepts:

Definition 3 (Singular vectors and values). Let A ∈ Rn×d. Two vectors u ∈ Rn

and v ∈ Rd with unit Euclidean norm are respectively called left and right singular
vectors of A if the following two equations hold

• Av = σu

• uTA = σvT .

σ is known as a singular value of A.

Note that the concepts of singular values and vectors are related with those of
eigenvalues and eigenvectors:

Proposition 4. Let A be a matrix with right singular vector v and singular value σ.
Then v is an eigenvector of ATA with eigenvalue σ2.

Proof. ATAv = ATuσ = (uTA)Tσ = (σvT )Tσ = σ2v and vTATA = σuTA =
σ2vT .

This shows that the largest eigenvalue of ATA and the squared largest singular
value of A are equivalent. From linear algebra we know that:

Theorem 5. Let A ∈ Rn×d be a matrix with rank r. Then there exist r triples
σi ∈ R, ui ∈ Rn, vi ∈ Rd, such that:

• Aui = σivi and ATvi = σiui
T .

• σi ̸= 0. Furthermore we can choose σi > 0, and we typically define σ1 ≥ σ2 ≥
· · · ≥ σr > 0.

• For i, j ∈ [r] with i ̸= j we have that ui
Tui = 1 and ui

Tuj = 0. In other words,
the uis form an orthonormal basis for an r-dimensional subspace of Rn.

• For i, j ∈ [r] with i ̸= j we have that vi
Tvi = 1 and vi

Tvj = 0. In other words,
the vis form an orthonormal basis for an r-dimensional subspace of Rd.
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• A can be written as

A = σ1u1v1
T + σ2u2v2

T + · · ·+ σrurvr
T =

r∑
i=1

σiuivi
T . (3)

Let us group together the uis, the vis, and the σis. We define the matrices
Ur ∈ Rn×r and Vr ∈ Rd×r as

Ur =

 | | |
u1 u2 · · · ur

| | |

 Vr =

 | | |
v1 v2 · · · vr

| | |

 ,

and the matrix Σr ∈ Rr×r as

Σr =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . . 0

0 0 · · · σr

 .

Note that we have Ur
TUr = Ir and Vr

TVr = Ir but UrUr
T ̸= In for r < n and

VrVr
T ̸= Id for d < n.

Now we can write

A =
r∑

i=1

σi

 |
u1

|

 ·
[

vi
T

]
=

r∑
i=1

 |
u1

|

 ·
[

σivi
T

]

(a)
=

 | | |
u1 u2 · · · ur

| | |

 ·


σ1v1

T

σ2v2
T

...
σrvr

T



=

 | | |
u1 u2 · · · ur

| | |

 ·


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . . 0

0 0 · · · σr

 ·


v1

T

v2
T

...
vr

T


where (a) follows from Section 2.2. Therefore, we obtain

A = UrΣrVr
T . (4)

Equations (3) and the equvallent (4) (and the one we will see later (5)) define the
singular value decomposition (SVD) of matrix A. Often we refer to the form of
Equation (4) as the reduced form of the SVD. Later we will see the full form. The
SVD is very important in data mining, because, as we will see, it shows how we can
decompose our dataset into components that carry the information of the data in
decreasing order.

Theorem 5 gives us r orthonormal left singular vectors uis. We can choose n− r
more vectors ur+1, . . . ,un such that each of them has unit norm and is orthogonal
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to all the other uis. (Note then these n− r vectors form a basis for the nullspace of
A.) This means, that the collection u1, . . . ,un is a basis for Rn.

Similarly, we can choose d − r more vectors vr+1, . . . ,vd, such that the entire
collection v1, . . . ,vd is a basis for Rd.

We now define the matrices U ∈ Rn×n and V ∈ Rd×d as

U =

 | | |
u1 u2 · · · un

| | |

 V =

 | | |
v1 v2 · · · vd

| | |

 ,

and the matrix Σ ∈ Rn×d as

Σ =



σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
...

...
. . . 0 0 · · · 0

0 0 · · · σr 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0


.

Note that we have UTU = UUT = In and VTV = VVT = Id. We can then write:

A = UΣVT . (5)

This equation is equivalent to Equations (3) and (4), and we often refer to it as the
(full) SVD.

4 Best-Fit Projections to Vectors and Subspaces

Principal Component Analysis is all about dimensionality reduction. As a tentative step, let us
consider reducing the dimension down to 1. The main question is which direction is the most
important one. Our notion of directional variance helps us in this regard. If a direction has
extremely low directional variance, we can confidently say that the centroid (or origin if our
data are normalized) will approximate the point set well enough. The most uncertainty is with
respect to directions of high directional variance. Hence, if we are only allowed to choose a
single direction, we should choose the one with maximum directional variance. Phrased as an
optimization problem, we aim to solve the following (see Figure 5).

max
v∈Rd,∥v∥=1

Varv
[
A(i)

]
.

Again, this has an algebraic interpretation. Specifically, the maximum directional variance is
(up to scaling) known as the squared spectral norm, where for any n× d matrix A the spectral
norm is defined as

∥A∥2 = max
v∈Rd,∥v∥2=1

∥Av∥2 = max
v∈Rd,∥v∥2=1

√√√√ n∑
i=1

(
A(i)v

)2
.

In the next theorem we show that the maximum directional variance equals the maximum
eigenvector σ1 and is achieved in the direction of the direction of v1.
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A(6)

A(5)

A(7)

A(8)
A(9)

v1

A(1)v1v1
T

A(1)

A(2)
A(3) A(4)

Figure 5: Projection of the dataset A onto the direction of vector v1, which is the vector v that
maximizes the variance Varv[A]. It also minimizes the sum of the squares of the distances of
the points to the line defined by v (the dashed lines).

Theorem 6. Let A be a matrix. Then the spectral norm ∥A∥2 is equal to the square of the
largest singular value of A, σ2

1 and achieved in the direction of v1.

Proof. Recall that σ1 is the largest singula value with ui∗ and vi∗ being the corresponding right
and left singular vectors of A. We have that ∥v1∥2 = 1 and that

∥Av∥22 = ∥σ1u1∥22 = σ2
1u

T
1 u1 = σ2

1.

Therefore we proved that for v = v1 we have that ∥Av∥2 = σ1, which means that ∥A∥2 ≥ σ1.
(Recall the definition ∥A∥2 = max

v∈Rd,∥v∥2=1
∥Av∥2.)

Now we show that ∥A∥2 ≤ σ1. Consider any vector v with ∥v∥2 = 1. We will prove that
∥Av∥2 ≤ σ1, and this will complete the proof. We have that ∥Av∥22 = vTATAv. Let us

consider v as a linear combination of the eigenvectors of ATA, that is, v =
∑d

i=1 αivi with∑d
i=1 α

2
i = 1 (because ∥v∥2 = 1) and {v1, . . . ,vd} being an orthogonal basis of eigenvectors of

13



ATA. Then,

vTATAv =

(
d∑

i=1

αiv
T
i

)
ATA

 d∑
j=1

αjvj


=

(
d∑

i=1

αiv
T
i

) d∑
j=1

αjA
TAvj


=

(
d∑

i=1

αiv
T
i

) d∑
j=1

αjσ
2
jvj


=

d∑
i=1

α2
i σ

2
i v

T
i vi +

d∑
i=1

d∑
j=1
j ̸=i

αiαjσ
2
i vi

Tvj,

where the second equality follows from Proposition 4. Because {v1, . . . ,vd} is an orthonormal
basis, we have that vi

Tvi = 1 and vi
Tvj = 0 for i ̸= j. Hence,

∥Av∥22 = vTATAv =

d∑
i=1

α2
i σ

2
i ≤

d∑
i=1

α2
i max
1≤j≤d

σ2
j = max

1≤j≤d
σ2
j = σ2

1.

Theorem 6 and Proposition 4 tell us that it is sufficient to find the largest eigenvalue of ATA
and associated eigenvector to determine the maximum directional variance. There are various
algorithms for computing eigenvalues: theoretically one can solve a system of linear equations;
in practice there are numerical algorithms, such as the power method, which find them quite
efficiently.

4.1 Best-Fit Subspaces

We now carry the discussion of the previous section further

2nd best direction. What if we want to take one more step? That is, consider the “leftover”
after the projection (i.e., the projecion to the subspace orthogonal to v1); what is the direction
of maximum variance? See Figure 6.

It is easy to see that the projection of the matrix to the orthogonal subspace to v1, which
is the matrix A(I − v1v1

T ), has the same singular values and singular vectors of A, with the
exception of σ1 which has become 0. To see this, note that we can write:

A(I− v1v1
T ) =

r∑
i=1

σiuivi
T (I− v1v1

T )

=
r∑

i=1

(
σiuivi

T − σiuivi
Tv1v1

T
)

=
r∑

i=1

σiuivi
T − σ1u1v1

T

=
r∑

i=2

σiuivi
T ,

14



A(7)

v1

A(1)

A(2)
A(3) A(4)

v2

A(5)

A(8)
A(6)

A(9)

A(9)(I−v1v1
T) = A(9)v2v2

T

Figure 6: Projection of the dataset A onto the subspace that is orthogonal to v1. This is the
“leftover” after the projection on v1 and is represented by the red points. The projection of
point A(i) on this subspace is the point A(i)(I−v1v1

T ). Here, because the points lie on R2, the
orthogonal subspace is simply the one spanned by the vector v2, so we have that the projected
points are A(i)(I− v1v1

T ) = A(i)v2v2
T .

15



begcause we have vi
Tv1 = 1 for i = 1, and 0 otherwise. Therefore, by applying Theorem 6

to A(I− v1v1
T ), whose highest singular value is σ2, we obtain that the direction of maximum

variance is v2 and the variance is σ2
2/n. In other words, we have:∥∥A(I− v1v1

T )
∥∥
2
= max

v∈Rd,∥v∥2=1

∥∥A(I− v1v1
T )v

∥∥
2
= σ2 = max

v∈Rd,∥v∥2=1

vTv1=0

∥Av∥2 . (6)

kth best direction. We can extend this process for k ≤ d steps. We can keep projecting the
“leftover,” and in a similar way we can show that the kth projection of maximum variance is
along the direction of vk and that we have (recall, from Section 2.4 that after we project to the
vectors v1, . . .vk−1, the “leftover” of A is A(I−Vk−1Vk−1

T )):∥∥A(I−Vk−1Vk−1
T )
∥∥
2
= max

v∈Rd,∥v∥2=1

∥∥A(I−Vk−1Vk−1
T )v

∥∥
2
= σk = max

v∈Rd,∥v∥2=1

vTv1=0,...,vTvk−1=1

∥Av∥2 .

(7)

Variance along multiple dimensions. Let us ask now a slightly different question. What
is the best 2-dimensional projection of A? In other words, what is a projection that maximizes
the directional variance of the projected points? Let’s try to understand this. First, following
the definition we used above, given some set of vectors {vi}, for any integer k we will use Vk

to represent the matrix

Vk =

 | | |
v1 v2 · · · vk

| | |

 .

We define analogously the matrix Wk for a set of vectors {wi}.
Consider a data pointA(i), and a set of k orthonormal vectorsw1, . . . ,wk. By the Pythagorean

theorem, the length of the projection of the vector A(i) on the subspace spanned by w1, . . . ,wk

is ∥∥A(i)WkWk
T
∥∥2
2
=

k∑
j=1

∥∥A(i)wk,wk
T
∥∥2
2
.

But as we saw in Section 2.3, the length of each vector A(i)wk,wk
T is A(i)wk. Therefore we

have that

∥∥A(i)WkWk
T
∥∥2
2
=

k∑
j=1

(
A(i)wk

)2
=
∥∥(A(i)w1,A(i)w2, . . . ,A(i)wk

)∥∥2
2
=
∥∥A(i)Wk

∥∥2
2
.

Then, by summing over all the rows of A, we have∥∥AWkWk
T
∥∥2
F
= ∥AWk∥2F . (8)

Best k-dimensional projection. Let’s go back to the question of finding the 2-dimensional
projection of A that maximizes the variance

1

n
∥AW2∥2F =

1

n

(
∥Aw1∥22 + ∥Aw2∥22

)
.

We will show next that the best subspace is the one spanned by the right singular vectors
of A, v1 and v2. Consider any other 2-dimensional subspace W2 and consider an orthonormal
basis (w1,w2) for W2, such that w2 is perpendicural to v1 (i.e., w2

Tv1 = 0). Note that it is
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v1

w2

w1

W2

Figure 7: Choosing a basis for the subspace W2 such that w2 is orthogonal to v1.

always possible to choose such a basis: If W2 is orthogonal to v1, then any orthonormal basis
of W2 will do (each vector in W2 is orthogonal to v1. Otherwise, consider the projection of v1

onto W2 and let w1 be the vector along this projection and w2 be orthogonal to the projection;
see Figure 7.

From Theorem 6 we have that

∥Av1∥2 ≥ ∥Aw1∥2 ,

and from Equation (6) we have that

∥Av2∥2 ≥ ∥Aw2∥2 .

Therefore,

∥AV2∥2F = ∥Av1∥22 + ∥Av2∥22 ≥ ∥Aw1∥22 + ∥Aw2∥22 = ∥AW2∥2F ,

proving that the subspace defined by the matrix V2 is the one that maximizes the variance.

Definition 7. Given a matrix A ∈ Rn×d and k ≤ d, the subspace that maximizes the directional
variance of the points in A is called the best-fit k-dimensional subspace of Rd with respect to A.

We have seen that for k = 1 and k = 2, the best-fit subpace is the one spanned by the first
k right singular vectors. We next show that this is more general.

Theorem 8. For any k ≤ d, the best fit subspace is the one spanned by the first k right singular
vectors of A. In particular, consider the vectors v1, . . . ,vk, and the corresponding matrix Vk.
Then, for any other orthonormal vectors w1, . . . ,wk we have

∥AVk∥F ≥ ∥AWk∥F .

Proof. The proof for general k is similar to the proof for k = 2 that we showd above. We will
prove by induction. The case k = 1 is given by Theorem 6. Assume now that it hold for k − 1,
that is, for any (k − 1)-dimensional subspace Wk−1 we have

∥AVk−1∥F ≥ ∥AWk−1∥F .

Consider now any k-dimensional subspace Wk. Choose a basis for Wk, such that wk is
orthogonal to all vectors v1, . . . ,vk−1; this can be done similarly to the case of k = 2. Then,
from Equation (7) we have that

∥Avk∥2 ≥ ∥Awk∥2 .
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Therefore, we obtain

∥AVk∥2F =

k−1∑
j=1

∥Avj∥22 + ∥Avk∥22

= ∥AVk−1∥2F + ∥Avk∥22
≥ ∥AWk−1∥2F + ∥Awk∥22

=

k−1∑
j=1

∥Awj∥22 + ∥Awk∥22

= ∥AWk∥2F ,

proving that the subspace defined by the matrix Vk is the one that maximizes the variance.

5 Principal Component Analysis

Having now gained intuition we can also see how we can apply it on data analysis. Given the
data matrix A, the SVD A =

∑r
j=1 σjujvj

T decomposes A into its principal components, as
we call them. Each component, which is a rank-1 matrix, captures some of the information of
the data. For a given component σjujvj

T , vj
T is the direction of the component, uj specifies

how much of this direction is present in each of n datapoints, and σj indicates the contribution
of the component to the data, Because the singular values are sorted in nonincreasing order,
the first components contain most of the information, the “signal,” and the last ones can be
thought of as minor information or even “noise.”

We define, for k ≤ d (and typically k ≤ r),

Ak =
k∑

j=1

σjujvj
T .

We have seen various facts:

• Ak is the a matrix of rank at most k and has rank k if and only if σk > 0. To make the
discussion simpler, we next assume that this is the case.

• Ak is the matrix of rank k that is closest to A in the sense that minimizes ∥A−X∥F
among all matrices X of rank at most k.

• It contains the projection of the points to the k-dimensional subspace of Rd that maximizes
the variance.

• Equivalently, it contains the projection of the points to the k-dimensional subspace of Rd

that minimizes the sum of the squared distances between each point and its projection.

We often work with Ak instead of the original matrix A. There are multiple reasons to do
this. First, by looking at A2 or even A3 we can visualize our data and gain some intuition.
Another important reason is to remove the noise. The intuition is that noise is generally
considered random so it does not have any particular direction in the feature space Rd. This
means that it is likely present in the lowest components. Therefore, by dropping the last
components, we can cleanup the data. This is similar to a highpass filter in signal processing,
which removes the high frequences of a signal, sometimes considered to be noise.
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How many components should we keep? There is not a unique way to do this. At the end of
the day, we need to try with different values and observe the data, see what results we obtain,
and so on. In any case, some typical approaches, is to keep adding components until we have
captured enough of the variance (e.g., 95%), or until the singular values drop significantly from
the previous ones.

Before we finish the discussion, we note two important steps that we need to do before
applying the SVD. First, as we mentioned, we need to center our data. If the data are not
centered, then the Frobenius norm does not capture the variance of our data and we end up
projecting our data set on different directions from the ones maximizing the variance.

A second step is normalization: We need to make the variance of each feature equal. Oth-
erwise, some features with high variance, may “pull” towards them the directions of maximum
variance. But what is wrong with this? The reason is that the variance of each feature depends
on the unit used. Consider for instance two dataset matrices A and B where in A some partic-
ular column (say j) the values are represented in centimeters, and B contains exactly the same
values, with the only difference that in this feature the values are represented in meters (i.e.
B(j) = A(j)/100). The two matrices contain exactly the same information, yet in A the v1 will
be much more aligned with feature j.

For these reasons, when we want to analyze our data matrix A, we perform the following
two preprocssing steps (in this order):

1. Center: For each row I, set A(i) = A(i) −
∑n

j=1A(j)

/
n

2. Normalize: For each column j, set A(j) = A(j)
/√∑n

i=1A
2
i,j

5.1 Dimensionality Reduction

We have that the points Ak = AVkVk
T are still points of Rd, yet they lie on a k-dinesional

subspace of Rd. Let us consider one of them, point A(i)VkVk
T . Notice that A(i)Vk is a k-

dimensional vector, giving the values of the coordinates of point A(i) along each of the vectors
vj, for j ∈ [k]. We can then change the coordinate system and represent the information of
the projection A(i)VkVk

T using the k-dimensional vector A(i)Vk in a new coordinate system

defined by the vectors v1, . . . ,vk. Similarly, we represent the entire vatrix VkVk
T as the set of

points AVk in the new coordinate system {v1, . . . ,vk}.
This is an example of dimensionality reduction. We take the points A(i) ∈ Rd and we

represent them as points in a space of reduced dimension k ≤ d. If k is much smaller than
d this can have multiple advantages in terms of efficiency but also as result quality, as it
addresses the problem of curse of dimensionality. Usually when we reduce the dimension we lose
some information and different approaches for dimensionality reduction are based on different
principles for maintaining information of the original data, PCA is based on the idea that we
find a linear projection from Rd to Rk that maintains as much of the variance of the original
data as possible.

As an example of a typical application of dimensionality reduction, is to take the original
data A, project them down to Rk using, for instance PCA, and then work on them (e.g., run
k-means) directly on the projected space Rk. Note that the number of clusters in the k-means
algorithm, generally should not exceed the dimesionality k for the results in the projected space
to hold for the original data.
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6 Applications to k-Means

We first would like to consider the sister minimization problem. We first observe that by the
Pythagorean theorem, for every i and for any subspace defined by the matrixWk = [w1, . . . ,wk]
(where, as usually, the vectors wj form and orthonormal basis) we have∥∥A(i)

∥∥2
2
=
∥∥A(i)WWT

∥∥2
2
+
∥∥A(i) −A(i)WWT

∥∥2
2
,

and summing over all the rows i of A we have:

∥A∥2F =
∥∥AWWT

∥∥2
F
+
∥∥A−AWWT

∥∥2
F

= ∥AW∥2F +
∥∥A−AWWT

∥∥2
F
,

where the last equality follows from Eq. (8). Given that ∥A∥2F is fixed, this means that
maximizing ∥AW∥2F (which is what we have been doing till now) is equivalent to minizing∥∥A−AWWT

∥∥2
F
. Minimizing ∥∥A−AWWT

∥∥2
F

for a rank k subspace W is known in literature as finding the best rank-k approximation.
Note that the whole discussion that we have done until now, could have been done for the

matrix AT , whose SVD is given by AT = VTΣTU. Applying the previous discussion to AT ,
we want to find a matrix Z of rank k that minimize∥∥AT −AZZT

∥∥2
F
,

which is equivalent to minimizing ∥∥A− ZZTA
∥∥2
F
.

Thus, instead of working with the rows of A we can work with the columns of A. We have
by now seen that the best rank-k matrix Z is the matrix Uk. Next we will see that also the
k-means problem can be formulated as a problem of finding such a rank-k matrix Z, but with
some additional constraints on Z.

First, consider the 1-means objective function, where we aim to find a point µ such that∑n
i=1

∥∥A(i) − c
∥∥2 is minimized. We know that c = µ = 1

n

∑n
i=1A(i) is optimal. Can we express

this problem algebraically? Indeed, we can. Let us rewrite the one means objective as

n∑
i=1

∥∥A(i) − c
∥∥2 = ∥A−C∥2F

with the contraint that every row of C is identical. Consider the vector X = 1√
n
· 1. Then the

optimal matrix C, that is, the matrix where every row is µ can be expressed as XXTA. More-
over, X is a unit vector. 1-means is therefore nothing but a constrained low-rank approximation
problem.

For k-means we have a similar picture. Consider the n by k clustering matrix X defined as

Xi =


1√
|Cj |

if point Ai is in cluster Cj

0 otherwise
.

The columns of X are orthogonal, that is, the jth column Xj satisfies
∥∥Xj

∥∥
2
= 1 and any

column Xi has a zero entry whenever a column Xj has a nonzero entry. Notice how Xi(Xi)TA
is mapped to the centroid of the cluster Ci. k-means can be therefore viewed as

min
rank k clustering matrix X

∥∥A−XXTA
∥∥2
F
.
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By lifting the constraint that X need be a clustering matrix, we are back to solving the
low-rank approximation. Hence if we only cluster in the best k-dimensional subspace instead
of the original d-dimensional space, we preserve most of the cost. This is made formal in the
following theorem.

Theorem 9. Let k be an integer and A ∈ Rn×d. Suppose we have an algorithm Alg that
computes an α-approximation. Let Ak = UkAVk

T be the best rank-k approximation. Then
running Alg on Ak yields a α+ 1 approximation.

Proof. Let X be the optimal clustering matrix. We observe that the optimal k-means cost∥∥A−XXTA
∥∥2
F
is lower bounded by ∥A−Ak∥2F . Let Y be the clustering matrix obtained by

Alg. Then∥∥A−YYTA
∥∥2
F

≤
∥∥A−YYTAk

∥∥2
F
≤
∥∥Ak −YYTAk

∥∥2
F
+ ∥A−Ak∥2F

≤ α ·
∥∥Ak −XXTAk

∥∥2
F
+
∥∥A−XXTA

∥∥2
F

≤ α ·
∥∥A−XXTA

∥∥2
F
+
∥∥A−XXTA

∥∥2
F
≤ (α+ 1)

∥∥A−XXTA
∥∥2
F
.

We remark that using Am instead of Ak for m > k/ε, we obtain an (α+ ε) approximation.
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