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9. MIXTURE MODELS AND EM

9.1.

view of mixture distributions in which the discrete latent variables can be interpreted
as defining assignments of data points to specific components of the mixture. A gen-
eral technique for finding maximum likelihood estimators in latent variable models
is the expectation-maximization (EM) algorithm. We first of all use the Gaussian
mixture distribution to motivate the EM algorithm in a fairly informal way, and then
we give a more careful treatment based on the latent variable viewpoint. We shall
see that the K -means algorithm corresponds to a particular nonprobabilistic limit of
EM applied to mixtures of Gaussians. Finally, we discuss EM in some generality.

Gaussian mixture models are widely used in data mining, pattern recognition,
machine learning, and statistical analysis. In many applications, their parameters are
determined by maximum likelihood, typically using the EM algorithm. However, as
we shall see there are some significant limitations to the maximum likelihood ap-
proach, and in Chapter 10 we shall show that an elegant Bayesian treatment can be
given using the framework of variational inference. This requires little additional
computation compared with EM, and it resolves the principal difficulties of maxi-
mum likelihood while also allowing the number of components in the mixture to be
inferred automatically from the data.

K-means Clustering

We begin by considering the problem of identifying groups, or clusters, of data points
in a multidimensional space. Suppose we have a data set {x1, ..., Xy} consisting
of N observations of a random D-dimensional Euclidean variable x. Our goal is to
partition the data set into some number K of clusters, where we shall suppose for
the moment that the value of K is given. Intuitively, we might think of a cluster as
comprising a group of data points whose inter-point distances are small compared
with the distances to points outside of the cluster. We can formalize this notion by
first introducing a set of D-dimensional vectors i, where £ = 1, ..., K, in which
L, is a prototype associated with the k*" cluster. As we shall see shortly, we can
think of the p,, as representing the centres of the clusters. Our goal is then to find
an assignment of data points to clusters, as well as a set of vectors {;,}, such that
the sum of the squares of the distances of each data point to its closest vector p,, is
a minimum.

It is convenient at this point to define some notation to describe the assignment
of data points to clusters. For each data point x,,, we introduce a corresponding set
of binary indicator variables 7, € {0, 1}, where k = 1,..., K describing which of
the K clusters the data point x,, is assigned to, so that if data point x,, is assigned to
cluster k then 7, = 1, and r,; = 0 for j # k. This is known as the 1-of-K coding
scheme. We can then define an objective function, sometimes called a distortion

measure, given by
N K
J=2_ D rail

n=1 k=1
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which represents the sum of the squares of the distances of each data point to its
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assigned vector p1;,. Our goal is to find values for the {7} and the {p1;} so as to
minimize J. We can do this through an iterative procedure in which each iteration
involves two successive steps corresponding to successive optimizations with respect
to the ry,1, and the p1;,. First we choose some initial values for the g, Then in the first
phase we minimize J with respect to the r,, keeping the p,, fixed. In the second
phase we minimize J with respect to the g, keeping 7, fixed. This two-stage
optimization is then repeated until convergence. We shall see that these two stages
of updating 7, and updating p,, correspond respectively to the E (expectation) and
M (maximization) steps of the EM algorithm, and to emphasize this we shall use the
terms E step and M step in the context of the K -means algorithm.

Consider first the determination of the r,%. Because J in (9.1) is a linear func-
tion of 7y, this optimization can be performed easily to give a closed form solution.
The terms involving different n are independent and so we can optimize for each
n separately by choosing 7,5 to be 1 for whichever value of k gives the minimum
value of ||x, — p . In other words, we simply assign the n*® data point to the
closest cluster centre. More formally, this can be expressed as

1 f g = i . —_ . 2
- if k AR T, [l — 12l ©2)
0 otherwise.

Now consider the optimization of the g1, with the r,;, held fixed. The objective
function J is a quadratic function of p;, and it can be minimized by setting its
derivative with respect to f1;, to zero giving

N
2> k(% — py) =0 (9.3)

n=1

which we can easily solve for p1;, to give

Z TnkXn
= i BEH 9.4)
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The denominator in this expression is equal to the number of points assigned to
cluster &, and so this result has a simple interpretation, namely set p1;, equal to the
mean of all of the data points x,, assigned to cluster k. For this reason, the procedure
is known as the K -means algorithm.

The two phases of re-assigning data points to clusters and re-computing the clus-
ter means are repeated in turn until there is no further change in the assignments (or
until some maximum number of iterations is exceeded). Because each phase reduces
the value of the objective function J, convergence of the algorithm is assured. How-
ever, it may converge to a local rather than global minimum of J. The convergence
properties of the K-means algorithm were studied by MacQueen (1967).

The K-means algorithm is illustrated using the Old Faithful data set in Fig-
ure 9.1. For the purposes of this example, we have made a linear re-scaling of the
data, known as standardizing, such that each of the variables has zero mean and
unit standard deviation. For this example, we have chosen K = 2, and so in this
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Figure 9.1 lllustration of the K-means algorithm using the re-scaled Old Faithful data set. (a) Green points
denote the data set in a two-dimensional Euclidean space. The initial choices for centres p; and p, are shown
by the red and blue crosses, respectively. (b) In the initial E step, each data point is assigned either to the red
cluster or to the blue cluster, according to which cluster centre is nearer. This is equivalent to classifying the
points according to which side of the perpendicular bisector of the two cluster centres, shown by the magenta
line, they lie on. (c) In the subsequent M step, each cluster centre is re-computed to be the mean of the points
assigned to the corresponding cluster. (d)—(i) show successive E and M steps through to final convergence of
the algorithm.
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(9.1) after each E step (blue points) 1000}
and M step (red points) of the K-
means algorithm for the example
shown in Figure 9.1. The algo- J
rithm has converged after the third
M step, and the final EM cycle pro-
duces no changes in either the as- 500
signments or the prototype vectors.

B < )

case, the assignment of each data point to the nearest cluster centre is equivalent to a
classification of the data points according to which side they lie of the perpendicular
bisector of the two cluster centres. A plot of the cost function J given by (9.1) for
the Old Faithful example is shown in Figure 9.2.

Note that we have deliberately chosen poor initial values for the cluster centres
so that the algorithm takes several steps before convergence. In practice, a better
initialization procedure would be to choose the cluster centres ), to be equal to a
random subset of K data points. It is also worth noting that the K -means algorithm
itself is often used to initialize the parameters in a Gaussian mixture model before
applying the EM algorithm.

A direct implementation of the K-means algorithm as discussed here can be
relatively slow, because in each E step it is necessary to compute the Euclidean dis-
tance between every prototype vector and every data point. Various schemes have
been proposed for speeding up the K-means algorithm, some of which are based on
precomputing a data structure such as a tree such that nearby points are in the same
subtree (Ramasubramanian and Paliwal, 1990; Moore, 2000). Other approaches
make use of the triangle inequality for distances, thereby avoiding unnecessary dis-
tance calculations (Hodgson, 1998; Elkan, 2003).

So far, we have considered a batch version of K -means in which the whole data
set is used together to update the prototype vectors. We can also derive an on-line
stochastic algorithm (MacQueen, 1967) by applying the Robbins-Monro procedure
to the problem of finding the roots of the regression function given by the derivatives
of J in (9.1) with respect to ;. This leads to a sequential update in which, for each
data point x,, in turn, we update the nearest prototype p;, using

HE = i+ (k= ) ©95)
where 7, is the learning rate parameter, which is typically made to decrease mono-
tonically as more data points are considered.

The K-means algorithm is based on the use of squared Euclidean distance as the
measure of dissimilarity between a data point and a prototype vector. Not only does
this limit the type of data variables that can be considered (it would be inappropriate
for cases where some or all of the variables represent categorical labels for instance),



