7.1

Gra_ph _Ne_ural Networ_ks

Introduction

Graphs are the mathematical representation of networks. Networks describe in-
teractions between entities; for example, a social network of friends, bonds be-
tween atoms in a molecule or protein, the internet of web pages, the cellular
communication network between users, a financial transaction network between
bank clients, protein-to-protein interaction networks, or the neural networks be-
tween neurons in our brains. Specifically, the human brain consists of around 100
billion neurons (for comparison, the cat brain consists of around one billion neu-
rons) with 100 trillion connections between neurons. Each neuron is connected
to 5,000-200,000 other neurons, and there are around 10,000 different types of
neurons. Perhaps most importantly, around 1,000 neurons are generated each
day of our lives. Modeling such networks requires a dynamic graph structure.

Each node in a network may have an associated feature vector, as shown in
Figure 7.1. For example, in a graph representing a molecule or protein; the nodes
are the atoms, the bonds between atoms are the edges, and each node has an
associated feature vector of atom properties. In a social network, each node may
represent a user. The edges are connections between users. Each node may have
a feature vector, including the user’s age, gender, status, country, occupation,
interests, likes, etc.

Network data is often messy or incomplete, and therefore we would like to be

Figure 7.1 A graph with nodes. Each node 5 € V is associated with a feature vector
v € R™

7—

7.1 Introduction 125

Figure 7.2 Graph node classification. The goal is to classify the uncolored nodes to
one of two classes, green or blue.

n-
e
ar able to perform operations on graphs, such as completing missing information
21l in the graph. Common tasks on networks include node classification for pre-
e- dicting the type of nodes, as shown in Figure 7.2, link prediction for predicting
)0 whether two nodes are connected, finding clusters for detecting communities,
1~ and measuring the similarity between nodes for embedding node features into
d a low-dimensional space. Specifically, we will use deep learning for performing
of three key operations on graphs:
h 1. Node prediction: predicting a property of a graph node.

2. Link prediction: predicting a property of a graph edge. For example, in a
1 social network, we can predict whether two people will become friends.
B 3. Graph or sub-graph prediction: predicting a property of the entire graph
n or a sub-graph. For example, given a graph representation of a protein, we
Y can predict its function as an enzyme or not. Given a molecule represented
€ as a graph, we can predict whether it will bind to a given receptor.
& Notice that if we only have node information and the task is edge prediction, we
. may pool the information from the graph nodes. Similarly, if we only have edge

information and the task is node prediction, we may pool information from the
graph edges.

A fundamental property common to neural network representations that work
well is that they all share weights. Chapter 5 on convolutional neural networks
(CNNs) describes neural networks applied to images of fixed size and regular
grids, sharing weights across space, as shown on the left of Figure 7.3, by using
a CNN or ResNet or ODENet. Chapter 6, on sequence models, describes neural
networks applied to sequences, sharing weights across time, as shown in the
center of Figure 7.3, by using a recurrent neural network (RNN), long short-term
memory (LSTM), or gated recurrent unit (GRU). In this chapter, we describe
graph neural networks (GNNs), applied to networks or general graphs sharing
weights across neighborhoods, as shown in the right of Figure 7.3. A key insight
in GNNs is that, similarly to CNNs or RNNs, nodes in the graph may aggregate
information from neighboring nodes.

126

7.2

7 Graph Neural Networks

EEEE

Figure 7.3 Neural network representations sharing weights. A CNN shares weights
across space (left); an RNN shares weights across time (center); and a GNN shares
weights across neighborhoods (right).

Definitions

We begin with basic graph definitions. A graph G = (V,€) contains a set of n
vertices (or nodes) V and a set of m edges £ between vertices. The edges of the
graph can either be undirected or directed.

A common duality of modeling problems in computer science is using graph
theory by a graph representation or linear algebra by a matrix representation.
Moving back and forth between graph theory and linear algebra allows us to
apply algorithms from both.

Two basic graph representations are an adjacency matrix and adjacency list.
An adjacency matrix A of dimensions n x n is defined such that:

Aiy = {1, if there is an edge between vertices ¢ and j (7.1)

0, otherwise

If the edges have weights then the 1s in the adjacency matrix are replaced with
edge weights w; ;. For an undirected graph the matrix A is symmetric.

The adjacency matrix of the example graph in Figure 7.4 with 9 nodes and 11
edges is the 9 x 9 matrix:

1
]

o
=

(7.2)

OO O OO = =
DO OO R OO =
COC OO0 O R OO
OO O = = O
O O OO O = O =IO
SO RO OHOOO
== O R O 0000
OO H OO OO
OO H OO O oo

L

where the number of 1s in matrix A is twice the number of edges in the graph.

Notice that different permutations of the node labels result in different ad-
jacency matrices. In contrast, an adjacency list of the edges in the graph is
invariant to node permutations. Storing an adjacency matrix takes O(n?) mem-

fn
the

ph
OI1.
to

ist.

1)

ith

7.2 Definitions 127

Figure 7.4 Example graph with 9 nodes and 11 edges.

ory, where n is the number of nodes in the graph; storing an adjacency list takes
only O(m + n), where m is the number of edges in the graph.
The degree of a node represents the number of edges incident to that node, and

the average degree of a graph is the average degree over all its nodes L S di,

which equals sz for an undirected graph and 7' for a directed grzph. In a
complete undirected graph, there is an edge between every two vertices for a
total of an—l—) edges.

The degree matrix D of the adjacency matrix A is a diagonal matrix such

that:

D; ; = degree(v;) = d; = ZAM (7.3)
j=1

The neighbors of a node 7 € V are its adjacent nodes N (¢), and the degree of a
node is its number of neighbors d; = |V (3)|. The degree matrix of the graph in
Figure 7.4 is the 9 x 9 diagonal matrix:

30000000 0
030000000
002000000
000500000

D=0 000200 00 (7.4)
000002000
0000O0GO0300
000000010
0 000 0O0O0O0 1

In a regular graph, each node has the same number of neighbors, which is the

degree of a node.
The graph Laplacian matrix L is the difference between the degree matrix and

T

128

7 Graph Neural Networks

adjacency matrix L = D — A. The Laplacian matrix of the example graph in
Figure 7.4 is given by the matrix:

3 -1 -1 -1 0 0 0 0 ©0
-1 3 60 -1 -1 0 0 0 0
-1 0 2 -1 0 0 0 0 O
-1 -1 -1 5 -1 -1 0 0 O
L=D-A=]0 -1 0 -1 2 60 o0 0 0 (7.5)
6 0 0 -1 0 2 -1 0 0
6 0 o o0 0 -1 3 -1 -1
6o 0 0 o o0 0 -1 1 0
6 0 0 o0 o0 0 -1 0 1]

The adjacency matrix and the degree matrix are symmetric, and therefore,
the Laplacian matrix is symmetric. Normalizing the Laplacian matrix makes
diagonal elements equal 1 and scales off-diagonal entries. The graph symmetric
normalized Laplacian matrix is:

L¥™ = D~3[D"% =] — D 3AD"? (7.6)

1
where D2 is a diagonal matrix with entries D, 2= ﬁ. Nodes without neigh-
bors are not normalized to avoid division by zero. The symmetric normalized

Laplacian matrix elements are given by:

i ifi=jandd; #£0

if 7 # 7 and node ¢ is adjacent to node j

sym __
Liyj - duIJ’

(7.7)
0, otherwise

The symmetric normalized Laplacian matrix of the example graph in Figure 7.4
is given by the matrix:

o o o o%lHﬁ‘“ S
[#21

Lsym —

J=

o o o o OE’H)—‘ oé[H

= = =ghsk shabar

which is a symmetric matrix.
The random walk normalized Laplacian matrix is a transition matrix for a
random walk on a graph with non-negative weights and is defined as:

|

i =
o [=2)

o QHH — og’Ho o o

L™ =D 'L=7I-D714

|

|

She-TE-T 2222

OHSL—AOOOOOO
)

)—AO§|HOOOOOO

N
~
oo

)

(7.9)

in

re,
ces
ric

6)

rh-
ed

i

9)

7.2 Definitions 129

where D! is a diagonal matrix with entries D;, il = d%_. The random walk nor-
malized Laplacian matrix elements are given by:

1, ifi=j7andd; #0

0, otherwise

if i # 7 and node 7 is adjacent to node j (7.10)

The random walk normalized Laplacian matrix of the example graph in Figure
7.4 is given by the matrix:

L -+ -3 -3 0 0 0 0 O
1

-+ 1 0 -3 -3 0 0 0 O
-+ 0 1 -3 0 0 0 0 O
1 1

o T T A e SR B

Y=o -4 0o -3 1 0 0 0 O (7.11)

o 0 0 -+ o0 1 —3 0 0
o 0 0o 0 o0 -} 1 -3 —3
o 0 0 0 0 0 -1 1 0
lo o 0o 0 0 0 -1 0 1]

which is not symmetric and each row sums to zero. The matrices L™ and L¥™
are similar and therefore have the same eigenvalues.

A graph with n nodes has n eigenvectors with eigenvalues that are non-negative
since the Laplacian matrix L has non-negative eigenvalues. A sub-graph of a
graph is a subset of edges and all their nodes in the graph. If there is at least one
path between each pair of nodes in the sub-graph, it is a connected component.
The number of zero eigenvalues of the Laplacian matrix of a graph is the number
of its connected components.

A walk on a graph begins with a node 4 € V and ends with a node j € V and
traverses a sequence of edges and nodes between nodes ¢ and j. If the nodes are
distinct, the walk is a path; if the edges are distinct, the walk is a trail. In the
matrix, A¥, which is the adjacency matrix to the power of k, each entry A¥, is
the number of walks of length k in the graph between the node in row 7 and the
node in column j.

Graph nodes may consist of features z. For example, a binary feature z for
the graph shown in Figure 7.4 may be defined by appending a column to the

130

7.3

7 Graph Neural Networks

Figure 7.5 Graph node embedding. A node 7 € V with associated feature vector
vi € R™ which is embedded into a low-dimensional space z; € R?% by an embedding
v 2z

adjacency matrix:

A B C D EF G H I z
01 1 1 0 0 0 0 00
1 00 1 1 0 0 001
1 00 1 000 001
1 11 0 1 1 0 0 00
01 0 1 0 0 0 0 00 (7.12)
00 01 0 0 1 0 01
0O 000 0 1 0 110
00 000 0 1 000
0 0 0 0 0 0 1 0 0 1

or, for example, a graph in which the nodes are papers, the edges are the other
papers they cite, and the features are the paper abstract or the language embed-
ding of the abstract.

Most graphs are sparse, with fewer edges than square nodes m < n?; therefore,
adjacency lists are an alternative representation for efficient storage. A linked list
represents each vertex and all its edges and adjacent vertices.

Embeddings

An example of embedding a node in a graph into R™ is an embedding such that
similar nodes in the graph along with their features are embedded to nearby
nodes in the embedding space. Our embedding objective may not be limited to
similarity and may be defined with respect to other properties of the graph and
embedding space. We define an encoder f of a node i € V, such that f(z) is the
embedding of the node feature vector v; as shown in Figure 7.5.

ing

7.12)

other
\bed-

fore,
d list

that
arby
d to
and
y the

7.3 Embeddings 131

Figure 7.6 Sub-graph embedding by taking the sum of the embeddings of the nodes in
the sub-graph.

If each node i € V has an associated feature vector v; then a node embed-
ding, maintaining similarity, maps node feature vectors v; to vectors z; in a
low-dimensional space such that the similarity between nodes ¢ and j, denoted
by s(i,7), is maintained in the embedding space. For example, we may opti-
mize for the similarity between nodes i and j, such that their similarity s(z, j) is
maintained after the embedding f(i)T f(j), where f denotes the encoder which
embeds node feature vectors.

A shallow node embedding uses an n X 1-dimensional one-hot encoding e; of
each node 7 to look up the embedded node. The one-hot encoding e; of a node
i € V is an n x 1 zero vector except for a single 1 in position i. An embedding
matrix W of dimensionality d x n, where d is the dimensionality of a node feature
vector v; and n is the number of nodes, is formed such that each column of W is
the embedding of a different node. Multiplying the d x n embedding matrix W by
the n x 1 one-hot encoded vector e; representing a node ¢ results in We;, which
is the d x 1 ith column of the matrix W representing the node in the embedding
space. This results in a problem with shallow embeddings: they do not share
weights. As demonstrated earlier, the success of neural networks stems from
representations sharing weights across space in CNNs or across time in RNNs.
This motivates the sharing of weights by aggregating graph neighborhoods in
GNNs, as described in Section 7.5.

We may embed a sub-graph S € G, either by taking the sum of the embeddings
of the nodes in the sub-graph } . s f(4), or by taking a representative node j
of the sub-graph and setting the sub-graph embedding to be f(j) as shown in
Figures 7.6 and 7.7.

—

132 7 Graph Neural Networks

Figure 7.7 Sub-graph embedding by taking a representative node of the sub-graph.

7.4 Node Similarity

74.1 Adjacency-based Similarity

In node embeddings we define pairwise node similarity and optimize an embed-
ding to approximate similarities. Going beyond shallow node embeddings, we
can define different measures of similarity. For example, we define the similarity
between nodes ¢ and j to be the weight on the edge between them, s(¢, j) = 4, ;,
where A is the weighted adjacency matrix. We then find the matrix W with
dimensions d x n which minimizes the loss:

L= Y [fOTFG) - Asl? (7.13)
(3,J)EVXV

over all pairs of nodes in the graph.

7.4.2 Multi-hop Similarity

The first ring of neighbors of a node, as shown in Figure 7.8, is the node’s
neighborhood. Let A denote the adjacency matrix of 1-hop neighbors, A% denote
the adjacency matrix of 2-hop neighbors and in general A* the adjacency matrix
of k-hop neighbors. Then, we can minimize the loss:

L= Y If@770) - Akl (7.14)

(1,5)EVXV

743 Overlap Similarity

Another measure of similarity is the overlap between node neighborhoods, as
shown in Figure 7.9. Suppose nodes i and j share common nodes in the social
network of mutual friends. We can then minimize the loss function measuring
the overlap between neighborhoods:

L= Y [If&TfG) - Sl (7.15)

(3,5)VxV

ey e TIT [f o i C ™

7.4 Node Similarity 133

ved-
Figure 7.8 Graph neighborhoods. Given a root node shown in white, the 1-hop ring of
.We neighbors is shown in blue, the 2-hop neighbors are shown in green, and the 3-hop
rity neighbors are in purple.
i)j ?

vith

le’s
ote
Tix

14) Figure 7.9 Mutual nodes (shown in purple) are the overlap between node |
neighborhoods of nodes 7 and j.

where S; ; measures the overlap between the neighbors V() of node ¢ and neigh-

bors NV (j) of node j. The overlap may be measured using the overlap coefficient
as [M(E)NN(F)] SO, |V ()NN(3)]
S {INGOLINGIT ©F Jaccard similarity NN

jal
ing
7.4.4 Random Walk Embedding
15) We can define an embedding using a random walk from nodes in the graph, as

shown in Figure 7.10. A random walk in a graph begins with a node i € V' and

—

134

7 Graph Neural Networks

Figure 7.10 Graph random walk (shown in blue) consists of the nodes on a random
path starting from node i € V and ending in node j € V.

repeatedly walks to one of its neighbors V(i) with probability ﬁ for t steps

until reaching an end at node j on the graph.

Running random walks may start from each graph node ? multiple times. We
collect all the nodes visited for each node in the walk, and then optimize the
embedding defined by:

F()T f(5) o P(i and j co-occur on the random walk) = p(il) (7.16)

which is the probability that we reach node j starting a random walk from node
1.
Using the loss function:

L=y %" —logp(jlf(®) (7.17)

i€V JEN ()
where p(j|f(7)) is given by the softmax:

exp(f(&)" £(7))
jen exp(f ()T £(5))

p(lf(E) = > (7.18)

DeepWalk (Perozzi et al., 2014) uses a skip-gram model of random walks on a
graph to classify nodes of a graph. Node2vec (Grover and Leskovec, 2016) uses
a random walk on a graph based on both the current node i and the previous
nodes that led to node 4. Instead of moving from node ¢ to another node with
probability ﬁ, node2vec defines a random walk with probability based on the
length of the shortest path between the previous node and the next node. LINE
(Tang et al., 2015) embeds graph nodes into a low-dimensional space applied to
the task of node classification and link prediction.

D

7.4 Node Similarity 135

O
O O
o/o\

Figure 7.11 Regular graph structure representing neighboring pixels of an image.

teps
We
the
.16)
o Figure 7.12 Irregular graph structure of real-world graphs representing networks.
7.4.5 Graph Neural Network Properties
17) A CNN has a regular grid structure, as shown in Figure 7.11, which is suitable
for images; however, it is not suitable for real-world graphs, which have irregular
structure, as shown in Figure 7.12.
A naive approach for representing a general graph is to concatenate each node’s
feature vectors to the adjacency matrix and encode each node by the correspond-
18) ing row of the adjacency matrix and its features. A fully connected network archi-
tecture given a node’s row in the adjacency matrix and features is unsuitable for
na graph representation. Having such a vector representation be the input to a fully
568 connected neural network has numerous limitations. In such a naive network, the
OUS number of parameters is linear in the size of the graph, the network is dependent
ith on the order of the nodes, and it does not accommodate dynamic graphs. We
the want to be able to add or remove nodes to real-world graphs, such as the social
NE network, without changing the network architecture. The desired properties of
to our graph neural network architecture are that the number of parameters is in-

dependent of the graph size, scaling to graphs with billions of nodes, that the

D, o

136 7 Graph Neural Networks

Figure 7.13 Each node aggregates information from its ring of neighbors.

network is invariant to node ordering, that the operations be local depending
on neighborhoods, that the model accommodates any graph structure, and that
once we learn the properties of one graph, we can transfer them to a new unseen
graph.

7.5 Neighborhood Aggregation in Graph Neural Networks

We consider GNNs that take into account neighbors of each node, aggregating
information from neighboring nodes similar to breadth-first search (BFS); and
the other graph neural network which considers chains from a node, similar to
depth-first search (DFS). In the first architecture, we consider each node in the
graph and pick up the graph from that node as the root, allowing all other nodes
to dangle, building a computation graph where that node is the root. Once
we determine the node computation graph, we will propagate and transform
information from its neighbors, its neighbors’ neighbors, and so on, as shown in
Figure 7.13, where each node consists of a vector containing the features of the
node.

Most GNNs are based on aggregating information into each node from its
neighboring nodes in a layer ¢ and combining that information with the node
features in that layer:

hi = combine*{nf~1, aggregatee{hf_l,j eEN@E)}} (7.19)

where hf is the feature representation of node i at layer 4.
Consider the graph shown in Figure 7.14. We generate embeddings based on
local neighborhoods and aggregate information from neighbors using the neural

ding
that
seen

ting
and
r to
the
rdes
)nce
orm
n in
the

its
ode

| on
aral

7.5 Neighborhood Aggregation in Graph Neural Networks 137

Figure 7.14 A computational graph is constructed for each node, aggregating its
neighbors and in turn from each neighbor.

A B c D E F
£ s 5 » = =

L] []] i [] M)

f[i\ " {/ __ //Jf_ e J f"r\,\ ‘_\r\

D @ e ® C & (G Q
AR 4 4 S S S ¥
i S A A S o ok ¢ 1 o 5\ .
N8 [IV WA NA /I\ I\ /N
A dddd & S5OAAS AodbLodsde &0 dody 60 Aodd &

Figure 7.15 Computational graphs starting from each node in the graph, sharing
weights between different computational graphs for all 1-hop neighbors, 2-hop
neighbors, and 3-hop neighbors. The roots of the computational graphs for each node
form the last layer of the GNN, whereas the leaves and their node features form the
first layer.

network. Consider node A; its neighbors are nodes B, C, and D, and in turn B’s
neighbors are nodes A and C, C’s neighbors are nodes 4, B, E, and F, and D’s
neighbor is node A.

Next, we consider each node in turn and generate a computation graph for
each node where that node is the root. Finally, we will share the aggregation
parameters across all nodes for every layer of neighbors, as shown in Figure 7.15.

The gray boxes in each layer in Figure 7.15 represent aggregation parameters,
denoted in the special case below by shared matrices WE and B for layer £, such
that the aggregation boxes in each layer are identical and shared across nodes.

138

7.5.1

7.6

7.6.1

7 Graph Neural Networks

In summary, the nodes have embeddings at each layer, and the network shares
aggregation parameters across all nodes in a layer.

We denote the feature vector of a node i by h{ = a;. A feature vector hf will
be an aggregation of the feature vectors .-‘:.j"l of the neighbors j € N(3) of i and
the feature vector hf‘l of the previous layer embedding. An example of a choice
of aggregation and combination function is:

hi?
hi=o W Y oy T B (7.20)
enty V@)

where Af is the fth layer embedding of i, ¢ is a non-linear activation function and

> SENT() E%}Tf%l is the average of neighbors in the previous layer embedding. We
have two types of weight matrices: W¥ is a matrix of weights for neighborhood
embeddings, and B is a matrix of weights for self-embedding. These matrices
are shared for each layer ¢ across all nodes.

Supervised Node Classification Using a GNN

For the task of node classification, given m labeled nodes 5 with labels 3¢ we
train a GNN by minimizing the objective:

~ 3L g (7.21)
=1

where the predictions §¢ are the softmax of the node representations at the last
layer.

Graph Neural Network Variants

Graph Convolution Network

A graph convolution network (GCN; Kipf and Welling (2017)) has a similar
formulation using a single matrix for both the neighborhood and self-embeddings
normalized by the product of square roots of node degrees:

A. .
2 __ 2 i {—1
F=a (W' > i
JEIUN (i) \/ d;d;
(7.22)

Y Z A thﬁ—l_l_diwehf—l

JEN(3) 4/ ijji

where A = A+ [is the adjacency matrix including self-loops, d; is the degree in
the graph with self-loops, and o is a non-linear activation function. Aggregation
is defined by the term on the left and the combination on the right.

ares
will

~and
10ice

7.20)
‘and

- We

100d
rices

we

21)

last

ilar
ings

e in
bion

7.6.2

7.6.3

7.6 Graph Neural Network Variants 139

An equivalent formulation (Wu et al., 2019) is given by:

H*' = D=2 AD: H*W* (7.23)
where ﬁiﬂ' = Zj Ai,j-

GraphSAGE

GraphSAGE (Hamilton et al., 2017) concatenates the neighborhood embedding
and self-embedding:

b = 0([Wéaggregate({h§_1,j e N(1)}), B*hé™1)) (7.24)

(3

The graph neighborhood aggregation function can be the mean, pooling, or
an LSTM sequence model:

Rt

Mean aggregation: Z =) (7.25)
ien V(@)

Pooling: v({Qh%™",5 € N (i)}) (7.26)

LSTM: LSTM([rS™", 5 € m(N(i))]) (7.27)

and the network learns the parameters for aggregating information.

In the training process, we have an output embedding after L layers e; = h¥
and we learn the weight matrices W for the neighborhood embedding and B*
for self-embedding. We define a neighborhood aggregation function and a loss
function on embedding and train on a set of nodes generating embeddings for
nodes.

This is useful since once we train the GNN, and compute the aggregation
parameters, namely the weight matrices, we can generalize to new nodes. We
generate a computation graph for a new node and transfer the weight matrices
to the new node and compute a forward pass for prediction. In addition, given an
entire new graph, we can transfer the aggregation weight matrices computed on
one graph to a new graph and compute the forward pass to perform prediction.

Gated Graph Neural Networks

The second architecture, similar to DFS, shares weights across all the layers in
each computation graph, instead of sharing weights across neighborhoods. In
gated graph neural networks (Li et al., 2016) nodes aggregate messages from
neighbors using a neural network, and similar to RNNs parameter sharing is
across layers:
mi=Ww > R (7.28)
JEN(4)

hf = GRU(KSY, m¥) (7.29)

?

T

140 7 Graph Neural Networks

7.6.4 Graph Attention Networks

In graph attention networks (GATs) (Velickovié et al., 2018) we use attention-
based neighborhood aggregation. The attention function adaptively controls the
contribution of neighbor j to node i:

¢ e
hi=a| > ai;Whi™ (7.30)
FEIUN(3)
where a; ; are the attention coefficients that define a distribution over node ;
and its neighbors k € NV (¢) using the softmax:

exp(ei)
Q4,5 = . (7.31
" ZA-e-:tuN(f) exp(ei k))
and e; ; is a function of A{~* and hf_l:
ei,; = ReLU(vT (Wh{™H|[WhS™) (7.32)

where || is the concatenation operation, and v and W are a learned vector and
weight matrix. When using multiple attention heads, hf is the aggregation of
multiple contributions, each of the form of Equation 7.30.

7.6.5 Message-Passing Networks

In a similar fashion to using aggregation and combination, a message-passing
graph neural network is defined by messages between nodes across edges (aggre-
gation) and node updates (combination):

hi = update®(hf 71, Z messagee(hf_l,hf_l,ei,j)) (7.33)
JEN(D)

1.7 Applications

Graph neural networks are used in a wide range of applications, including (1) im-
age retrieval; (2) computer vision for scene understanding (Santoro et al., 2017);
(3) computer graphics for 3D shape analysis (Monti et al., 2017) and for learn-
ing point-cloud representations (Wang, Sun, Liu, Sarma, Bronstein and Solomon,
2019); (4) social networks for link prediction; (5) recommender systems and few-
shot learning (Garcia and Bruna, 2018); (6) combinatorial optimization (Ma
et al., 2020); (7) physics for learning the dynamics and interactions of physical
objects (Battaglia et al., 2016; Chang et al., 2017; Watters et al., 2017; Sanchez-
Gonzalez et al., 2018; Van Steenkiste et al., 2018); (8) chemistry for molecule
classification (Duvenaud et al., 2015; Gilmer et al., 2017), defining a graph in
which molecules are nodes and edges represent bonds between molecules, and

_

7.8 Software Libraries, Benchmarks, and Visualization 141

molecule design (Jin et al., 2018); (9) biology for drug discovery, protein func-
on- tion prediction, and protein-protein interactions; (10) for representing computer
s the programs; (11) in natural language processing; (12) for traffic applications such
as ride hailing and flight classification; and (13) in stock trading.

7.30) 7.8 Software Libraries, Benchmarks, and Visualization

ode PyTorch Geometric (Fey and Lenssen, 2019) is a library for deep learning on
graphs in PyTorch. DGL (Wang, Yu, Gan, Zhaoogle, Gai, Ye, Li, Zhou, Huang,
Zheng, Lin, Ma, Deng, Guo, Zhang and Huang, 2020) is an optimized library

7.31) for deep learning on graphs in PyTorch and MXNet. OGB (Liu et al., 2020) is a
collection of benchmark datasets, data-loaders and evaluators for deep learning
on graphs.

7.32)

7.9 Summary
- and
on of Graph neural networks (Hamilton et al., 2017; Kipf and Welling, 2017; Velickovié

et al., 2018; Xu et al., 2019) are applied to irregular structures such as networks
represented by graphs. They commonly share weights across neighborhoods, sim-
ilar to how CNNs share weights across space and RNNs share weights across
time. Graph neural networks are used for three main tasks: (1) predicting prop-
38ing erties of particular nodes, (2) predicting edges between nodes, and (3) predicting
ygTe- properties of sub-graphs or entire graphs.

7.33)

im-
17);
arn-
nomn,
few-
(Ma

sical

hez-
cule
h in
and

