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Linear Models for Classification

Learning a function f : X → Y , with ...

X ⊆ <n

Y = {C1, . . . ,Ck}

assuming linearly separable data.
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Linearly separable data

Instances in a data set are linearly separable iff it exists a hyperplane that
divide the instance space into two regions such that differently classified
instances are separated.
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Discriminant functions

Linear discriminant function

y : X → {C1, . . . ,CK}

Two classes:
y(x) = wTx + w0

Multi classes:
yk(x) = wT

k x + wk0
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Linear Classification
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Basis functions
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Logistic Regression

Consider first the case of two classes.

Find the conditional probability:

P(C1|x) =
P(x|C1)P(C1)

P(x|C1)p(C1) + P(x|C2)p(C2)

=
1

1 + exp(−α)
= σ(α).

with:

α = ln P(x|C1)P(C1)
P(x|C2)P(C2)

and

σ(α) = 1
1+exp(−α) the sigmoid function.
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Logistic Regression

Assume P(x|Ci ) ∼ N (x|µi ,Σ) - same covariance matrix

we get:

P(C1|x) = σ(wTx + w0),

Multiclass logistic regression

p(Ck |φ) = yk(φ) =
exp(ak)∑
j exp(aj)︸ ︷︷ ︸
softmax

,with ak = wT
k φ

Valsamis Ntouskos (ALCOR Lab) Introduction to Deep Learning 9 / 39



Sapienza University of Rome, Italy

Linear Regression

Goal: Estimate the value t of a continuous function at x based on a
dataset D composed of N observations {xn}, where n = 1, . . . ,N,
together with the corresponding target values {tn}.

Ideally:
t = y(x,w)

Valsamis Ntouskos (ALCOR Lab) Introduction to Deep Learning 10 / 39



Sapienza University of Rome, Italy

Linear Regression - Model

Linear Basis Function Models

Simplest case:

y(x,w) = w0 + w1x1 + . . .+ wDxD = wTx

with x =

 1
...
xD

 and w =

w0
...

wD


Linear both in model parameters w and variables x.

Too limiting!
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Example - Line fitting

y = w1x1 + w0
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Linear Regression - Model

Linear Basis Function Models

Using nonlinear functions of input variables:

y(x,w) =
M−1∑
j=0

wjφj(x) = wTφ,

with φ0(x) = 1 and φ =

 φ0
...

φM−1



Still linear in the parameters w!
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Example - Polynomial curve fitting

y = w0 + w1x + w2x
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Linear Regression - Model

Examples of basis functions
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Deep Feedforward Networks

Alternative names:

Feedforward Neural Networks

(Artificial) Neural Networks - (A)NNs

Multilayer Perceptrons - MLPs

Represent a parametric function

Suitable for tasks described as associating a vector to another vector
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Deep Feedforward Networks

Goal: Estimate some function f ∗

Examples:

Classification y = f ∗(x) with x ∈ X and y ∈ {c1, . . . , cK}
Regression y = f ∗(x) with x ∈ X and y ∈ R

Density estimation y = f ∗(x) with x ∈ X and
∫
X y = 1

Framework: Define y = f (x,θ) and learn parameters θ
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Deep Feedforward Networks

Data: target values tn corresponding to given input variable values xn
such that tn ≈ f ∗(xn)
We use ≈ as the data may be affected by noise.

Objective:
Learn θ such that f (x,θ) approximates as much as possible f ∗.
Training based on a suitable cost (loss) function

Note: Dataset contains no target values about hidden units!
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DFN - Terminology

Feedforward information flows from input to output without any loops

Networks f is a composition of elementary functions in an acyclic graph

Example:
f (x) = f (3)(f (2)(f (1)(x,θ(1)),θ(2)),θ(3))

where:

f (m) the m-th layer of the network

and

θ(m) the corresponding parameters
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DFN - Terminology

DFNs are chain structures

The length of the chain is the depth of the network

Final layer also called output layer

Name deep learning follows from the use of networks with a large number
of layers (large depth)
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Deep Feedforward Networks

Draw inspiration from brain structures

Image from Isaac Changhau https://isaacchanghau.github.io

Hidden layer output can be seen as an array of unit (neuron) activations
based on the connections with the previous units

Note: Only use some insights, they are not a model of the brain function!
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Deep Feedforward Networks

Why DFNs?

Linear models cannot model interaction between input variables

Kernel methods require the choice of suitable kernels

use generic kernels e.g. RBF, polynomial, etc. (convex problem)

use hand-crafted kernels - application specific (convex problem)

Deep leaning:
consider parametric mapping functions φ and learn their parameters
(non-convex problem)

Model:
y = f (x,θ,w) = φ(x,θ)Tw
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Gradient-based learning

Learning remarks

Parameters found via gradient-based learning

Unit saturation can hinder learning

When units saturate gradient becomes very small

Suitable cost function and unit nonlinearities help to avoid saturation

Valsamis Ntouskos (ALCOR Lab) Introduction to Deep Learning 23 / 39



Sapienza University of Rome, Italy

Cost function

Model implicitly defines a conditional distribution p(t|x,θ)

Cost function:
Typically choose the negative log-likelihood - Maximum likelihood principle

J(θ) = − ln(p(t|x))

Example:
Assuming additive Gaussian noise we have

p(t|x) = N (t|f (x,θ), β−1I )

and hence

J(θ) =
1

2
(t− f (x,θ))2
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Gradient Computation

Information flows forward through
the network when computing
network output y from input x

To train the network we need to
compute the gradients with respect
to the network parameters θ

The back-propagation or backprop
algorithm is used to propagate
gradient computation from the cost
through the whole network

Image by Y. LeCun

Valsamis Ntouskos (ALCOR Lab) Introduction to Deep Learning 25 / 39



Sapienza University of Rome, Italy

Gradient Computation

Goal: Compute the gradient of the cost function w.r.t. the parameters

∇θJ(θ)

Analytic computation of the gradient is straightforward

simple application of the chain rule

numerical evaluation can be expensive

Back-propagation is simple and inexpensive.

Remarks:

back-propagation is not a training algorithm

back-propagation is only used to compute the gradients

back-propagation is not specific to DFNs
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Learning algorithms

Stochastic Gradient Descent (SGD)

SGD with momentum

Algorithms with adaptive learning rates
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Stochastic Gradient Descent

Require: Learning rate η
Require: Initial values of θ
k ← 1
while stopping criterion not met do

Sample a subset (minibatch) {x(1), . . . , x(m)} of m examples from the
dataset D
Compute gradient estimate: g = 1

m∇θ
∑

i L(f (x(i),θ), t(i))
Apply update: θ ← θ − ηg
k ← k + 1

end while

Note: η might change according to some rule through the iterations
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Output units activation functions

Network output units determine also the cost function.
Let h = f (x,θ) the output of the hidden layers.

Regression
Linear units: Identity activation function - no nonlinearity

y = W Th + b

Used to model a conditional Gaussian distribution

p(t|x) = N (t|y , β−1)

Maximum likelihood equivalent to minimizing mean squared error

Note: Linear units do not saturate!
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Output units activation functions

Binary classification
Sigmoid units: Sigmoid activation function

y = σ(wTh + b)

We have seen that the likelihood corresponds to a Bernoulli distribution
Hence:

J(θ) = − lnP(t|x)

= − lnσ(α)t(1− σ(α))1−t

= − lnσ((2t − 1)α)

= softplus((1− 2t)α),

with α = wTh + b.

Note: Unit saturates only when it gives the correct answer.
If α has wrong sign softplus((1− 2t)α) ≈ |α| and dy

dα ≈ sign(α).
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Output units activation functions
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Output units activation functions

Multiclass classification
Softmax units: Softmax activation function

y = softmax(α)i =
exp(αi )∑

j αj

Likelihood corresponds to a Multinomial distribution
Hence:

J(θ)i = − ln softmax(α)i = ln
∑
j

exp(αj)− αi

Note: ln
∑

j exp(αj) ≈ ln exp(maxj(αj)) = maxj αj .
If αi corresponds to the correct answer the derivative is small.
Misclassifications give large derivatives.
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Hidden units activation functions

Rectified Linear Units:

g(α) = max{0, α}.

Easy to optimize - similar to linear units

Not differentiable at 0 - does not cause problems in practice

Valsamis Ntouskos (ALCOR Lab) Introduction to Deep Learning 33 / 39



Sapienza University of Rome, Italy

Hidden unit activation functions
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Hidden unit activation functions

Sigmoid and hyperbolic tangent:

g(α) = σ(α)

and
g(α) = tanh(α)

Closely related as tanh(α) = 2σ(2α)− 1.

Remarks:

No logarithm at the output, the units saturate easily.

Gradient based learning is very slow.

Hyperbolic tangent gives larger gradients with respect to the sigmoid.
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Activation functions overview

Image from Geron A. ”Hands-On Machine Learning with Scikit-Learn and TensorFlow”, O’Reilly 2017
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Regularization

Early stopping:
Stop iterations early to avoid overfitting to the training set of data
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Regularization

Dropout: Randomly remove network units with some probability α

(a) Standard Neural Net (b) After applying dropout.

Image from Srivastava et al.. ”Dropout: A Simple Way to Prevent Neural Networks from Overfitting”
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Regularization

With dropout

Without dropout

Image from Srivastava et al.. ”Dropout: A Simple Way to Prevent Neural Networks from Overfitting”
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