#### University of Rome "La Sapienza"

Dep. of Computer, Control and Management Engineering A. Ruberti

## Introduction to Deep Learning

Valsamis Ntouskos

ALCOR Lab

#### Overview

- Linear Classification
- Logistic Regression
- Linear Regression
- Deep Feedforward Networks
- Training DFNs
- Activation Function
- Regularization

#### Linear Models for Classification

Learning a function  $f: X \to Y$ , with ...

- $X \subseteq \Re^n$
- $Y = \{C_1, \ldots, C_k\}$

assuming linearly separable data.

# Linearly separable data

Instances in a data set are *linearly separable* iff it exists a hyperplane that divide the instance space into two regions such that differently classified instances are separated.





#### Discriminant functions

Linear discriminant function

$$y: X \to \{C_1, \ldots, C_K\}$$

Two classes:

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

Multi classes:

$$y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$$

#### Linear Classification



#### Basis functions





# Logistic Regression

Consider first the case of two classes.

Find the conditional probability:

$$P(C_1|\mathbf{x}) = \frac{P(\mathbf{x}|C_1)P(C_1)}{P(\mathbf{x}|C_1)p(C_1) + P(\mathbf{x}|C_2)p(C_2)}$$
$$= \frac{1}{1 + \exp(-\alpha)} = \sigma(\alpha).$$

with:

$$\alpha = \ln \frac{P(\mathbf{x}|C_1)P(C_1)}{P(\mathbf{x}|C_2)P(C_2)}$$

and

$$\sigma(\alpha) = \frac{1}{1 + \exp(-\alpha)}$$
 the sigmoid function.

# Logistic Regression

Assume  $P(\mathbf{x}|C_i) \sim \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma})$  - same covariance matrix

we get:

$$P(C_1|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x} + w_0),$$





#### Multiclass logistic regression

$$p(C_k|\phi) = y_k(\phi) = \underbrace{\frac{exp(a_k)}{\sum_j exp(a_j)}}_{softmax}, \text{with } a_k = \mathbf{w}_k^T \phi$$

## Linear Regression

Goal: Estimate the value t of a continuous function at  $\mathbf{x}$  based on a dataset  $\mathcal{D}$  composed of N observations  $\{\mathbf{x}_n\}$ , where  $n=1,\ldots,N$ , together with the corresponding target values  $\{t_n\}$ .

Ideally:

$$t = y(\mathbf{x}, \mathbf{w})$$

# Linear Regression - Model

#### Linear Basis Function Models

Simplest case:

$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_D x_D = \mathbf{w}^T \mathbf{x}$$
  
with  $\mathbf{x} = \begin{bmatrix} 1 \\ \vdots \\ x_D \end{bmatrix}$  and  $\mathbf{w} = \begin{bmatrix} w_0 \\ \vdots \\ w_D \end{bmatrix}$ 

Linear both in model parameters  $\mathbf{w}$  and variables  $\mathbf{x}$ .

Too limiting!

# Example - Line fitting



# Linear Regression - Model

Linear Basis Function Models

Using nonlinear functions of input variables:

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi,$$

with 
$$\phi_0(\mathbf{x})=1$$
 and  $oldsymbol{\phi}=egin{bmatrix}\phi_0\ dots\ \phi_{M-1}\end{bmatrix}$ 

• Still linear in the parameters w!

# Example - Polynomial curve fitting

$$y = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

# Linear Regression - Model

#### **Examples of basis functions**



#### Alternative names:

- Feedforward Neural Networks
- (Artificial) Neural Networks (A)NNs
- Multilayer Perceptrons MLPs

Represent a parametric function

Suitable for tasks described as associating a vector to another vector

**Goal**: Estimate some function  $f^*$ 

#### Examples:

Classification 
$$y = f^*(\mathbf{x})$$
 with  $x \in \mathcal{X}$  and  $y \in \{c_1, \dots, c_K\}$   
Regression  $y = f^*(\mathbf{x})$  with  $x \in \mathcal{X}$  and  $y \in \mathbb{R}$   
Density estimation  $y = f^*(\mathbf{x})$  with  $x \in \mathcal{X}$  and  $\int_{\mathcal{X}} y = 1$ 

Framework: Define  $y = f(\mathbf{x}, \boldsymbol{\theta})$  and learn parameters  $\boldsymbol{\theta}$ 

**Data**: target values  $t_n$  corresponding to given input variable values  $\mathbf{x}_n$  such that  $t_n \approx f^*(\mathbf{x}_n)$ 

We use  $\approx$  as the data may be affected by noise.

#### Objective:

Learn  $\theta$  such that  $f(\mathbf{x}, \theta)$  approximates as much as possible  $f^*$ . Training based on a suitable cost (loss) function

Note: Dataset contains no target values about hidden units!

### **DFN** - Terminology

Feedforward information flows from input to output without any loops Networks f is a composition of elementary functions in an acyclic graph

Example:

$$f(\mathbf{x}) = f^{(3)}(f^{(2)}(f^{(1)}(\mathbf{x}, \boldsymbol{\theta}^{(1)}), \boldsymbol{\theta}^{(2)}), \boldsymbol{\theta}^{(3)})$$

where:

 $f^{(m)}$  the m-th layer of the network

and

 $\theta^{(m)}$  the corresponding parameters

## DFN - Terminology

#### DFNs are chain structures

The length of the chain is the **depth** of the network

Final layer also called output layer

Name **deep learning** follows from the use of networks with a large number of layers (large depth)

#### Draw inspiration from brain structures



Image from Isaac Changhau https://isaacchanghau.github.io

Hidden layer output can be seen as an array of **unit** (neuron) activations based on the connections with the previous units

Note: Only use some insights, they are not a model of the brain function!

#### Why DFNs?

Linear models cannot model interaction between input variables

Kernel methods require the choice of suitable kernels

- use generic kernels e.g. RBF, polynomial, etc. (convex problem)
- use hand-crafted kernels application specific (convex problem)

#### Deep leaning:

consider parametric mapping functions  $\phi$  and learn their parameters (non-convex problem)

Model:

$$y = f(\mathbf{x}, \boldsymbol{\theta}, \mathbf{w}) = \phi(\mathbf{x}, \boldsymbol{\theta})^T \mathbf{w}$$

### Gradient-based learning

#### Learning remarks

- Parameters found via gradient-based learning
- Unit saturation can hinder learning
- When units saturate gradient becomes very small
- Suitable cost function and unit nonlinearities help to avoid saturation

#### Cost function

Model implicitly defines a conditional distribution  $p(\mathbf{t}|\mathbf{x}, \boldsymbol{\theta})$ 

Cost function:

Typically choose the negative log-likelihood - Maximum likelihood principle

$$J(\theta) = -\ln(p(\mathbf{t}|\mathbf{x}))$$

Example:

Assuming additive Gaussian noise we have

$$p(\mathbf{t}|\mathbf{x}) = \mathcal{N}(\mathbf{t}|f(\mathbf{x}, \boldsymbol{\theta}), \beta^{-1}I)$$

and hence

$$J(\boldsymbol{\theta}) = \frac{1}{2}(\mathbf{t} - f(\mathbf{x}, \boldsymbol{\theta}))^2$$

## **Gradient Computation**

Information flows forward through the network when computing network output y from input x

To train the network we need to compute the gradients with respect to the network parameters  $\boldsymbol{\theta}$ 

The back-propagation or backprop algorithm is used to propagate gradient computation from the cost through the whole network



Image by Y. LeCun

# **Gradient Computation**

**Goal**: Compute the gradient of the cost function w.r.t. the parameters

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

Analytic computation of the gradient is straightforward

- simple application of the chain rule
- numerical evaluation can be expensive

Back-propagation is simple and inexpensive.

#### Remarks:

- back-propagation is not a training algorithm
- back-propagation is only used to compute the gradients
- back-propagation is **not** specific to DFNs

### Learning algorithms

- Stochastic Gradient Descent (SGD)
- SGD with momentum
- Algorithms with adaptive learning rates

#### Stochastic Gradient Descent

```
Require: Learning rate \eta
Require: Initial values of \theta
k \leftarrow 1
while stopping criterion not met \mathbf{do}
Sample a subset (minibatch) \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\} of m examples from the dataset \mathcal{D}
Compute gradient estimate: \mathbf{g} = \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(\mathbf{x}^{(i),\theta}), \mathbf{t}^{(i)})
Apply update: \theta \leftarrow \theta - \eta \mathbf{g}
k \leftarrow k + 1
end while
```

Note:  $\eta$  might change according to some rule through the iterations

Network output units determine also the cost function. Let  $h = f(\mathbf{x}, \boldsymbol{\theta})$  the output of the hidden layers.

Regression

Linear units: Identity activation function - no nonlinearity

$$y = W^T \mathbf{h} + \mathbf{b}$$

Used to model a conditional Gaussian distribution

$$p(t|\mathbf{x}) = \mathcal{N}(t|y, \beta^{-1})$$

Maximum likelihood equivalent to minimizing mean squared error

Note: Linear units do not saturate!

Binary classification

Sigmoid units: Sigmoid activation function

$$y = \sigma(\mathbf{w}^T \mathbf{h} + b)$$

We have seen that the likelihood corresponds to a Bernoulli distribution Hence:

$$J(\boldsymbol{\theta}) = -\ln P(t|\mathbf{x})$$

$$= -\ln \sigma(\alpha)^{t} (1 - \sigma(\alpha))^{1-t}$$

$$= -\ln \sigma((2t - 1)\alpha)$$

$$= \operatorname{softplus}((1 - 2t)\alpha),$$

with  $\alpha = \mathbf{w}^T \mathbf{h} + \mathbf{b}$ .

Note: Unit saturates only when it gives the correct answer. If  $\alpha$  has wrong sign  $\operatorname{softplus}((1-2t)\alpha) \approx |\alpha|$  and  $\frac{dy}{d\alpha} \approx \operatorname{sign}(\alpha)$ .



The softplus function

Multiclass classification

Softmax units: Softmax activation function

$$y = \operatorname{softmax}(\alpha)_i = \frac{\exp(\alpha_i)}{\sum_j \alpha_j}$$

Likelihood corresponds to a Multinomial distribution Hence:

$$J(\boldsymbol{\theta})_i = -\ln \operatorname{softmax}(\alpha)_i = \ln \sum_j \exp(\alpha_j) - \alpha_i$$

Note:  $\ln \sum_j \exp(\alpha_j) \approx \ln \exp(\max_j(\alpha_j)) = \max_j \alpha_j$ . If  $\alpha_i$  corresponds to the correct answer the derivative is small. Misclassifications give large derivatives.

#### Hidden units activation functions

#### Rectified Linear Units:

$$g(\alpha) = \max\{0, \alpha\}.$$

- Easy to optimize similar to linear units
- Not differentiable at 0 does not cause problems in practice

#### Hidden unit activation functions



#### Hidden unit activation functions

#### Sigmoid and hyperbolic tangent:

$$g(\alpha) = \sigma(\alpha)$$

and

$$g(\alpha) = \tanh(\alpha)$$

Closely related as  $tanh(\alpha) = 2\sigma(2\alpha) - 1$ .

#### Remarks:

- No logarithm at the output, the units saturate easily.
- Gradient based learning is very slow.
- Hyperbolic tangent gives larger gradients with respect to the sigmoid.

#### Activation functions overview



Image from Geron A. "Hands-On Machine Learning with Scikit-Learn and TensorFlow", O'Reilly 2017

## Regularization

#### Early stopping:

Stop iterations early to avoid overfitting to the training set of data



## Regularization

**Dropout**: Randomly remove network units with some probability  $\alpha$ 



Image from Srivastava et al.. "Dropout: A Simple Way to Prevent Neural Networks from Overfitting"

## Regularization



Image from Srivastava et al.. "Dropout: A Simple Way to Prevent Neural Networks from Overfitting"