University of Rome "La Sapienza"

Dep. of Computer, Control and Management Engineering A. Ruberti

Introduction to Deep Learning

Valsamis Ntouskos

ALCOR Lab

Overview

- Linear Classification
- Logistic Regression
- Linear Regression
- Deep Feedforward Networks
- Training DFNs
- Activation Function
- Regularization

Linear Models for Classification

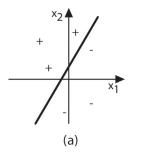
Learning a function $f: X \to Y$, with ...

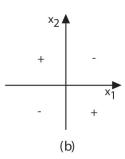
- $X \subseteq \Re^n$
- $Y = \{C_1, \ldots, C_k\}$

assuming linearly separable data.

Linearly separable data

Instances in a data set are *linearly separable* iff it exists a hyperplane that divide the instance space into two regions such that differently classified instances are separated.





Discriminant functions

Linear discriminant function

$$y: X \to \{C_1, \ldots, C_K\}$$

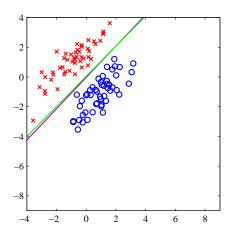
Two classes:

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

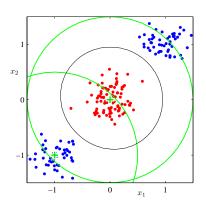
Multi classes:

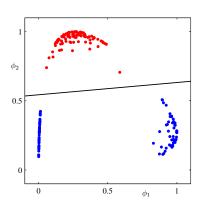
$$y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$$

Linear Classification



Basis functions





Logistic Regression

Consider first the case of two classes.

Find the conditional probability:

$$P(C_1|\mathbf{x}) = \frac{P(\mathbf{x}|C_1)P(C_1)}{P(\mathbf{x}|C_1)p(C_1) + P(\mathbf{x}|C_2)p(C_2)}$$
$$= \frac{1}{1 + \exp(-\alpha)} = \sigma(\alpha).$$

with:

$$\alpha = \ln \frac{P(\mathbf{x}|C_1)P(C_1)}{P(\mathbf{x}|C_2)P(C_2)}$$

and

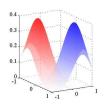
$$\sigma(\alpha) = \frac{1}{1 + \exp(-\alpha)}$$
 the sigmoid function.

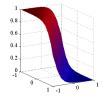
Logistic Regression

Assume $P(\mathbf{x}|C_i) \sim \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma})$ - same covariance matrix

we get:

$$P(C_1|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x} + w_0),$$





Multiclass logistic regression

$$p(C_k|\phi) = y_k(\phi) = \underbrace{\frac{exp(a_k)}{\sum_j exp(a_j)}}_{softmax}, \text{with } a_k = \mathbf{w}_k^T \phi$$

Linear Regression

Goal: Estimate the value t of a continuous function at \mathbf{x} based on a dataset \mathcal{D} composed of N observations $\{\mathbf{x}_n\}$, where $n=1,\ldots,N$, together with the corresponding target values $\{t_n\}$.

Ideally:

$$t = y(\mathbf{x}, \mathbf{w})$$

Linear Regression - Model

Linear Basis Function Models

Simplest case:

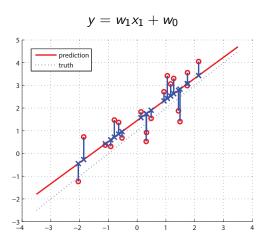
$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_D x_D = \mathbf{w}^T \mathbf{x}$$

with $\mathbf{x} = \begin{bmatrix} 1 \\ \vdots \\ x_D \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} w_0 \\ \vdots \\ w_D \end{bmatrix}$

Linear both in model parameters \mathbf{w} and variables \mathbf{x} .

Too limiting!

Example - Line fitting



Linear Regression - Model

Linear Basis Function Models

Using nonlinear functions of input variables:

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi,$$

with
$$\phi_0(\mathbf{x})=1$$
 and $oldsymbol{\phi}=egin{bmatrix}\phi_0\ dots\ \phi_{M-1}\end{bmatrix}$

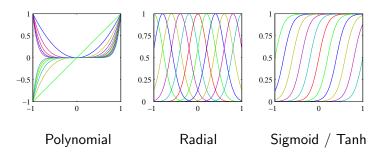
• Still linear in the parameters w!

Example - Polynomial curve fitting

$$y = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Linear Regression - Model

Examples of basis functions



Alternative names:

- Feedforward Neural Networks
- (Artificial) Neural Networks (A)NNs
- Multilayer Perceptrons MLPs

Represent a parametric function

Suitable for tasks described as associating a vector to another vector

Goal: Estimate some function f^*

Examples:

Classification
$$y = f^*(\mathbf{x})$$
 with $x \in \mathcal{X}$ and $y \in \{c_1, \dots, c_K\}$
Regression $y = f^*(\mathbf{x})$ with $x \in \mathcal{X}$ and $y \in \mathbb{R}$
Density estimation $y = f^*(\mathbf{x})$ with $x \in \mathcal{X}$ and $\int_{\mathcal{X}} y = 1$

Framework: Define $y = f(\mathbf{x}, \boldsymbol{\theta})$ and learn parameters $\boldsymbol{\theta}$

Data: target values t_n corresponding to given input variable values \mathbf{x}_n such that $t_n \approx f^*(\mathbf{x}_n)$

We use \approx as the data may be affected by noise.

Objective:

Learn θ such that $f(\mathbf{x}, \theta)$ approximates as much as possible f^* . Training based on a suitable cost (loss) function

Note: Dataset contains no target values about hidden units!

DFN - Terminology

Feedforward information flows from input to output without any loops Networks f is a composition of elementary functions in an acyclic graph

Example:

$$f(\mathbf{x}) = f^{(3)}(f^{(2)}(f^{(1)}(\mathbf{x}, \boldsymbol{\theta}^{(1)}), \boldsymbol{\theta}^{(2)}), \boldsymbol{\theta}^{(3)})$$

where:

 $f^{(m)}$ the m-th layer of the network

and

 $\theta^{(m)}$ the corresponding parameters

DFN - Terminology

DFNs are chain structures

The length of the chain is the **depth** of the network

Final layer also called output layer

Name **deep learning** follows from the use of networks with a large number of layers (large depth)

Draw inspiration from brain structures

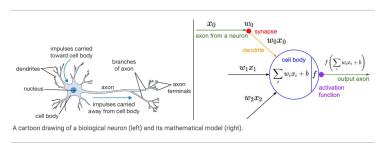


Image from Isaac Changhau https://isaacchanghau.github.io

Hidden layer output can be seen as an array of **unit** (neuron) activations based on the connections with the previous units

Note: Only use some insights, they are not a model of the brain function!

Why DFNs?

Linear models cannot model interaction between input variables

Kernel methods require the choice of suitable kernels

- use generic kernels e.g. RBF, polynomial, etc. (convex problem)
- use hand-crafted kernels application specific (convex problem)

Deep leaning:

consider parametric mapping functions ϕ and learn their parameters (non-convex problem)

Model:

$$y = f(\mathbf{x}, \boldsymbol{\theta}, \mathbf{w}) = \phi(\mathbf{x}, \boldsymbol{\theta})^T \mathbf{w}$$

Gradient-based learning

Learning remarks

- Parameters found via gradient-based learning
- Unit saturation can hinder learning
- When units saturate gradient becomes very small
- Suitable cost function and unit nonlinearities help to avoid saturation

Cost function

Model implicitly defines a conditional distribution $p(\mathbf{t}|\mathbf{x}, \boldsymbol{\theta})$

Cost function:

Typically choose the negative log-likelihood - Maximum likelihood principle

$$J(\theta) = -\ln(p(\mathbf{t}|\mathbf{x}))$$

Example:

Assuming additive Gaussian noise we have

$$p(\mathbf{t}|\mathbf{x}) = \mathcal{N}(\mathbf{t}|f(\mathbf{x}, \boldsymbol{\theta}), \beta^{-1}I)$$

and hence

$$J(\boldsymbol{\theta}) = \frac{1}{2}(\mathbf{t} - f(\mathbf{x}, \boldsymbol{\theta}))^2$$

Gradient Computation

Information flows forward through the network when computing network output y from input x

To train the network we need to compute the gradients with respect to the network parameters $\boldsymbol{\theta}$

The back-propagation or backprop algorithm is used to propagate gradient computation from the cost through the whole network

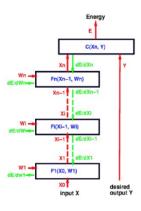


Image by Y. LeCun

Gradient Computation

Goal: Compute the gradient of the cost function w.r.t. the parameters

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

Analytic computation of the gradient is straightforward

- simple application of the chain rule
- numerical evaluation can be expensive

Back-propagation is simple and inexpensive.

Remarks:

- back-propagation is not a training algorithm
- back-propagation is only used to compute the gradients
- back-propagation is **not** specific to DFNs

Learning algorithms

- Stochastic Gradient Descent (SGD)
- SGD with momentum
- Algorithms with adaptive learning rates

Stochastic Gradient Descent

```
Require: Learning rate \eta
Require: Initial values of \theta
k \leftarrow 1
while stopping criterion not met \mathbf{do}
Sample a subset (minibatch) \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\} of m examples from the dataset \mathcal{D}
Compute gradient estimate: \mathbf{g} = \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(\mathbf{x}^{(i),\theta}), \mathbf{t}^{(i)})
Apply update: \theta \leftarrow \theta - \eta \mathbf{g}
k \leftarrow k + 1
end while
```

Note: η might change according to some rule through the iterations

Network output units determine also the cost function. Let $h = f(\mathbf{x}, \boldsymbol{\theta})$ the output of the hidden layers.

Regression

Linear units: Identity activation function - no nonlinearity

$$y = W^T \mathbf{h} + \mathbf{b}$$

Used to model a conditional Gaussian distribution

$$p(t|\mathbf{x}) = \mathcal{N}(t|y, \beta^{-1})$$

Maximum likelihood equivalent to minimizing mean squared error

Note: Linear units do not saturate!

Binary classification

Sigmoid units: Sigmoid activation function

$$y = \sigma(\mathbf{w}^T \mathbf{h} + b)$$

We have seen that the likelihood corresponds to a Bernoulli distribution Hence:

$$J(\boldsymbol{\theta}) = -\ln P(t|\mathbf{x})$$

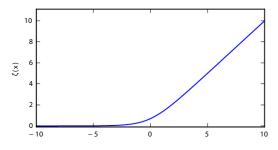
$$= -\ln \sigma(\alpha)^{t} (1 - \sigma(\alpha))^{1-t}$$

$$= -\ln \sigma((2t - 1)\alpha)$$

$$= \operatorname{softplus}((1 - 2t)\alpha),$$

with $\alpha = \mathbf{w}^T \mathbf{h} + \mathbf{b}$.

Note: Unit saturates only when it gives the correct answer. If α has wrong sign $\operatorname{softplus}((1-2t)\alpha) \approx |\alpha|$ and $\frac{dy}{d\alpha} \approx \operatorname{sign}(\alpha)$.



The softplus function

Multiclass classification

Softmax units: Softmax activation function

$$y = \operatorname{softmax}(\alpha)_i = \frac{\exp(\alpha_i)}{\sum_j \alpha_j}$$

Likelihood corresponds to a Multinomial distribution Hence:

$$J(\boldsymbol{\theta})_i = -\ln \operatorname{softmax}(\alpha)_i = \ln \sum_j \exp(\alpha_j) - \alpha_i$$

Note: $\ln \sum_j \exp(\alpha_j) \approx \ln \exp(\max_j(\alpha_j)) = \max_j \alpha_j$. If α_i corresponds to the correct answer the derivative is small. Misclassifications give large derivatives.

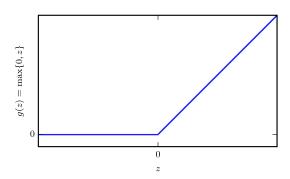
Hidden units activation functions

Rectified Linear Units:

$$g(\alpha) = \max\{0, \alpha\}.$$

- Easy to optimize similar to linear units
- Not differentiable at 0 does not cause problems in practice

Hidden unit activation functions



Hidden unit activation functions

Sigmoid and hyperbolic tangent:

$$g(\alpha) = \sigma(\alpha)$$

and

$$g(\alpha) = \tanh(\alpha)$$

Closely related as $tanh(\alpha) = 2\sigma(2\alpha) - 1$.

Remarks:

- No logarithm at the output, the units saturate easily.
- Gradient based learning is very slow.
- Hyperbolic tangent gives larger gradients with respect to the sigmoid.

Activation functions overview

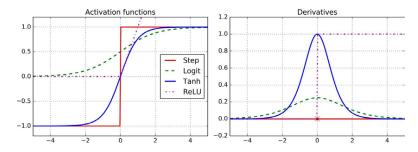
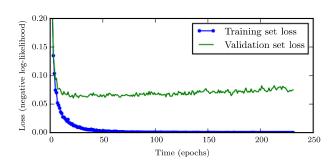


Image from Geron A. "Hands-On Machine Learning with Scikit-Learn and TensorFlow", O'Reilly 2017

Regularization

Early stopping:

Stop iterations early to avoid overfitting to the training set of data



Regularization

Dropout: Randomly remove network units with some probability α

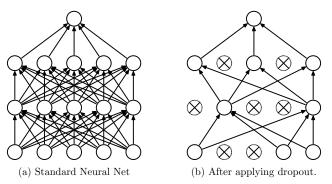


Image from Srivastava et al.. "Dropout: A Simple Way to Prevent Neural Networks from Overfitting"

Regularization

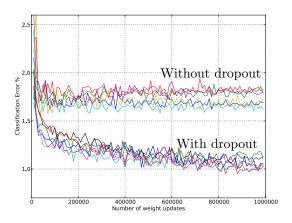


Image from Srivastava et al.. "Dropout: A Simple Way to Prevent Neural Networks from Overfitting"